ChemInform Abstract: Sequential Wittig Oxyanion-Accelerated Cope Reactions of 2,2,2-Triphenyl-5-vinyl-1,2λ5-oxaphospholane (original) (raw)
Related papers
Critical Assessment of Small Molecule Identification 2016: automated methods
Journal of Cheminformatics, 2017
Background: The fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest (www. casmi-contest.org) was held in 2016, with two new categories for automated methods. This article covers the 208 challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and postcontest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/ identification. Results: The Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in "Category 2: Best Automatic Structural Identification-In Silico Fragmentation Only", won by Team Brouard with 41% challenge wins. The winner of "Category 3: Best Automatic Structural Identification-Full Information" was Team Kind (MS-FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and chemistry-based approaches are shown to perform in complementary ways. Conclusions: The improvement in (semi-)automated fragmentation methods for small molecule identification has been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate numbers, open up great possibilities for high-throughput annotation of untargeted analysis for "known unknowns". As more high quality training data becomes available, the improvements in machine learning methods will likely continue, but the alternative approaches still provide valuable complementary information. Improved integration of experimental context will also improve identification success further for "real life" annotations. The true "unknown unknowns" remain to be evaluated in future CASMI contests.
LSTMVoter: chemical named entity recognition using a conglomerate of sequence labeling tools
Journal of Cheminformatics, 2019
Background: Chemical and biomedical named entity recognition (NER) is an essential preprocessing task in natural language processing. The identification and extraction of named entities from scientific articles is also attracting increasing interest in many scientific disciplines. Locating chemical named entities in the literature is an essential step in chemical text mining pipelines for identifying chemical mentions, their properties, and relations as discussed in the literature. In this work, we describe an approach to the BioCreative V.5 challenge regarding the recognition and classification of chemical named entities. For this purpose, we transform the task of NER into a sequence labeling problem. We present a series of sequence labeling systems that we used, adapted and optimized in our experiments for solving this task. To this end, we experiment with hyperparameter optimization. Finally, we present LSTMVoter, a two-stage application of recurrent neural networks that integrates the optimized sequence labelers from our study into a single ensemble classifier. Results: We introduce LSTMVoter, a bidirectional long short-term memory (LSTM) tagger that utilizes a conditional random field layer in conjunction with attention-based feature modeling. Our approach explores information about features that is modeled by means of an attention mechanism. LSTMVoter outperforms each extractor integrated by it in a series of experiments. On the BioCreative IV chemical compound and drug name recognition (CHEMDNER) corpus, LSTMVoter achieves an F1-score of 90.04%; on the BioCreative V.5 chemical entity mention in patents corpus, it achieves an F1-score of 89.01%.