Stayin' Alive (original) (raw)

DEMO: "Stayin' Alive": An Interactive Augmented - Reality CPR Tutorial

2018

Education is the Achilles heel of successful resuscitation in cardiac arrest. Therefore, we aim to contribute to the educational efficiency by providing a novel augmented-reality (AR) guided interactive cardiopulmonary resuscitation (CPR) "trainer". For this trainer, a mixed reality smart glass, Microsoft HoloLens, and a CPR manikin covered with pressure sensors were used. To introduce the CPR procedure to a learner, an application with an intractable virtual teacher model was designed. The teaching scenario consists of the two main parts, theory and practice. In the theoretical part, the virtual teacher provides all information about the CPR procedure. Afterward, the user will be asked to perform the CPR cycles in three different stages. In the first two stages, it is aimed to gain the muscle memory with audio and optical feedback system. In the end, the performance of the participant is evaluated by the virtual teacher

VirtualCPR: Virtual Reality Mobile Application for Training in Cardiopulmonary Resuscitation Techniques

Sensors

Deaths due to heart diseases are a leading cause of death in Mexico. Cardiovascular diseases are considered a public health problem because they produce cardiorespiratory arrests. During an arrest, cardiac and/or respiratory activity stops. A cardiorespiratory arrest is rapidly fatal without a quick and efficient intervention. As a response to this problem, the VirtualCPR system was designed in the present work. VirtualCPR is a mobile virtual reality application to support learning and practicing of basic techniques of cardiopulmonary resuscitation (CPR) for experts or non-experts in CPR. VirtualCPR implements an interactive virtual scenario with the user, which is visible by means of employment of virtual reality lenses. User’s interactions, with our proposal, are by a portable force sensor for integration with training mannequins, whose development is based on an application for the Android platform. Furthermore, this proposal integrates medical knowledge in first aid, related to ...

An Affordable, Virtual Reality Based Training Application for Cardiopulmonary Resuscitation

International Journal on Advances in ICT for Emerging Regions (ICTer), 2021

In Medical science, proficiency in Cardiopulmonary Resuscitation (CPR) is considered as a vital skill for physicians. For training CPR, medical professionals use mechanical manikin which has some drawbacks when it comes to the realism of the simulation and the feedback of performance. This paper presents a Virtual Reality (VR) based solution to address some of these shortcomings. The approach here is augmenting the mechanical manikin with VR using HTC Vive, Leap Motion Controller, and a glove. To test the acceptance of this solution, a user-based evaluation was carried out. 85.7% of the users who have participated in the evaluation have expressed their preference upon using VR in CPR training. Even though the overall evaluation depicts a neutral output, this study opens avenues for future research in combining VR into medical training processes.

Interactive Marker-based Augmented Reality for CPR Training

International Journal of Technology

CPR, or Cardiopulmonary Resuscitation, is a lifesaving technique useful for the case in which someone's heartbeat or breathing has stopped due to heart attack. Without proper CPR, nine out of ten patients die. The American Heart Association recommends CPR with chest compressions in the event of witnessing such an incident. For proper CPR training, taking a class with a CPR instructor is usually the best choice, but it is not practical and costly for mass training, especially in schools and universities. There are many new techniques available that can replace traditional CPR training and Augmented Reality (AR) is one of them. AR is the technology that integrates virtual objects or environments, created by digital technology, with the real world. Augmented Reality using marker-based technique is a good option, since a trainee can have a realistic look at the patient, know the position of the hand on the chest, identify the number of chest compressions per minute, and also know the pressure that he or she puts on the chest. Besides that, the status of the operation can be displayed along with a recording system for analysis. In this research, we chose marker-based AR due to its precision in distance measurement. For measuring the pressure on the chest, we use a marker-marker interaction technique. Unity 3D cross-platform game engine and Qualcomm's Vuforia-an augmented reality software development kit (SDK) for mobile devices that enables the creation of augmented reality applications-are required. The results from our experiment with a group of people with non-CPR training confirm that the configuration increases the speed and accuracy of CPR training.

A Pilot Study of CPR Quality Comparing an Augmented Reality Application vs. a Standard Audio-Visual Feedback Manikin

Frontiers in Digital Health

Background: Guidelines-based cardiopulmonary resuscitation (CPR) during in-hospital cardiac arrest is a significant predictor of survival, yet the quality of healthcare provider (HCP) CPR (e.g., nurses, physicians etc.) has been shown to be poor. Studies have found that providing HCPs with simulated CPR refresher trainings can improve their CPR quality, however, no studies have compared the use of an augmented reality (AR) CPR refresher training with a standard audiovisual (AV) feedback manikin to improve HCP training. Objectives: In our pilot study, HCPs were randomized to a refresher CPR simulation training with either our AR CPR training application (CPReality) or a standard AV feedback manikin. All subjects completed 2 min of CPR on their respective CPR training modalities, followed by an additional 2 min post-simulation CPR evaluation with no feedback. We hypothesized that the AR CPR training application would confer improved CPR quality defined as chest compression rate and depth compared with the standard AV feedback training. Results: Between January 2019 and May 2019, 100 HCPs were enrolled (50 in the CPReality cohort and 50 in the standard AV manikin cohort). The mean chest compression (CC) rate for all subjects during the intervention was 118 ± 15 cpm, and CC depth was 50 ± 8; post-intervention the CC rate was 120 ± 13 and CC depth was 51 ± 8. The mean CC rate for those trained with CPReality was 121 ± 3 compared with the standard CPR manikin training which was 114 ± 1 cpm (p < 0.006); CC depth was 48 ± 1 mm vs. 52 ± 1 (p = 0.007), respectively. Post-simulation CPR quality with no feedback showed a mean CC rate for the CPReality application at 122 ± 15 cpm compared with the standard CPR manikin at 117 ± 11 cpm (p = 0.09); depth was 49 ± 8 mm vs. 52 ± 8 (p = 0.095), respectively. In the post-survey, 79% of CPReality subjects agreed that the AR application provided a realistic patient presence compared with 59% (p = 0.07) of subjects in the standard CPR manikin cohort. Leary et al. Comparing CPR Augmented Reality vs. Standard Training Conclusions: In a randomized trial of an AR CPR training application compared with a standard CPR manikin training, the AR CPR application did not improve the quality of CPR performed during a CPR refresher training compared with the standard training in HCPs. Future studies should investigate the use of this and other digital technologies for CPR training and education.

Projected AR-Based Interactive CPR Simulator

Lecture Notes in Computer Science, 2013

In this paper, we propose a new approach of a cardiopulmonary resuscitation (CPR) simulation system that exploits both AR-based visualization and embedded hardware sensing techniques. The proposed system provides real-time interactive visual feedback to the CPR trainee with the projected AR indicator plane that visualizes results of an interlocking signal of the trainee's actions using embedded sensors. This system also provides proper guidelines about the CPR trainee's posture by detecting a user's articular pose from a RGB-D camera in real-time. As implementation results, our system provides interactive feedback, that enabling more accurate and effective training experience to the trainee and more cost-effective rather than traditional CPR education training systems.

Viewpoint: Virtual and Augmented Reality in Basic and Advanced Life Support Training (Preprint)

UNSTRUCTURED The use of augmented reality (AR) and virtual reality (VR) for life support training is increasing. These technologies provide an immersive experience that supports learning in a safe and controlled environment. This review focuses on the use of AR and VR for emergency care training for health care providers, medical students, and nonprofessionals. In particular, we analyzed (1) serious games, nonimmersive games, both single-player and multiplayer; (2) VR tools ranging from semi-immersive to immersive virtual and mixed reality; and (3) AR applications. All the toolkits have been investigated in terms of application goals (training, assessment, or both), simulated procedures, and skills. The main goal of this work is to summarize and organize the findings of studies coming from multiple research areas in order to make them accessible to all the professionals involved in medical simulation. The analysis of the state-of-the-art technologies reveals that tools and studies r...

Construction process of a Virtual Learning Environment in Adult Cardiopulmonary Resuscitation

2021

There are still considerable variability in survival rates regarding Cardiopulmonary Arrest (CA) that cannot be attributed exclusively to the patient characteristics. The lack of knowledge about the theme by professionals and academics is a graduation consequence. This way, graduating professionals able to operate front CA situations is believed to be a primordial attitude to increase patients’ survival chances. To do so, there are digital strategies that can be used, one of them is the Virtual Learning Environment. Thus, this paper’s objective is to develop a virtual interactive educational proposal about cardiopulmonary resuscitation care on adults. This is an applied research, which led to the development of a technological product – the elaboration of an educational proposal applied to Virtual Learning Environment. Then, it took place the cyclic phases of conception and planning, development and implementation, according to procedures and evidence reported on previous studies. The Virtual Learning Environment was called “Training in Basic Life Support (BLS)”, and has seven modules: “Historical Aspects”, “Basic Life Support”, “Epidemiology”, “Concepts”, “Anatomy and Physiology”, “Algorithms”, “Simulation and Questions”. The illustrations, formatting and layout were built by integrating both language programming technologies: PHP and JavaScript. The results of the evaluation, made by the academics, about the VLE usage pointed that opportunities to self-learning were created and the available resources in the environment were useful to support learning. It’s necessary to comprehend and incorporate the Virtual Learning Environment as an efficient educational tool, and get aware of this knowledge as a strategy to add up new experiences and values to teachers’ practice.

Training CPR with a wearable real time feedback system

Proceedings of the 2018 ACM International Symposium on Wearable Computers, 2018

We present a study comparing the effect of real-time wearable feedback with traditional training methods for cardiopulmonary resuscitation (CPR). The aim is to ensure that the students can deliver CPR with the right compression speed and depth. On the wearable side, we test two systems: one based on a combination of visual feedback and tactile information on a smart-watch and one based on visual feedback and audio information on a Google Glass. In a trial with 50 subjects (23 trainee nurses and 27 novices,) we compare those modalities to standard human teaching that is used in nurse training. While a single traditional teaching session tends to improve only the percentage of correct depth, it has less effect on the percentage of effective CPR (depth and speed correct at the same time). By contrast, in a training session with the wearable feedback device, the average percentage of time when CPR is effective improves by up to almost 25%.

Development of a training tool for endotracheal intubation: Distributed Augmented Reality

Studies in health …, 2003

The authors introduce a tool referred to as the Ultimate Intubation Head (UIH) to train medical practitioners' hand-eye coordination in performing endotracheal intubation with the help of augmented reality methods. In this paper we describe the integration of a deployable UIH and present methods for augmented reality registration of real and virtual anatomical models. The assessment of the 52 degrees field of view optics of the custom-designed and built head-mounted display is less than 1.5 arc minutes in the amount of blur and astigmatism, the two limiting optical aberrations. Distortion is less than 2.5%. Preliminary results of the registration of a physical phantom mandible on its virtual counterpart yields less than 3mm rms. in registration. Finally we describe an approach to distributed visualization where a given training procedure may be visualized and shared at various remote locations. Basic assessments of delays within two scenarios of data distribution were conducted and reported. 16 hospital study conducted by the National Emergency Airway Registry between August 1997 and October 1998, out of 2392 recorded ETIs, 309 complications were reported, with 132 of these difficulties resulting from intubation procedures . Many anesthesiologists believe that the most common reason for failure of intubation is the inability to visualize the vocal cords. In fact, failed intubation is one of the leading causes of anesthesia-related morbidity and mortality . Thus, there is international concern for the need to extensively train paramedics in pre-hospital emergency situations .