Growth of Dehalobacter and Dehalococcoides spp. during Degradation of Chlorinated Ethanes (original) (raw)

A 1,1,1-Trichloroethane-Degrading Anaerobic Mixed Microbial Culture Enhances Biotransformation of Mixtures of Chlorinated Ethenes and Ethanes

Applied and Environmental Microbiology, 2006

1,1,1-Trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics. This study characterized MS, a 1,1,1-TCA-degrading, anaerobic, mixed microbial culture derived from a 1,1,1-TCA-contaminated site in the northeastern United States. MS reductively dechlorinated 1,1,1-TCA to 1,1-dichloroethane (1,1-DCA) and then to monochloroethane (CA) but not further. Cloning of bacterial 16S rRNA genes revealed among other organisms the presence of a Dehalobacter sp. and a Desulfovibrio sp., which are both phylogenetically related to known dehalorespiring strains. Monitoring of these populations with species-specific quantitative PCR during degradation of 1,1,1-TCA and 1,1-DCA showed that Dehalobacter prolifera...

Characterization of a Dehalobacter Coculture That Dechlorinates 1,2-Dichloroethane to Ethene and Identification of the Putative Reductive Dehalogenase Gene

Applied and Environmental Microbiology, 2009

Dehalobacter and “ Dehalococcoides ” spp. were previously shown to be involved in the biotransformation of 1,1,2-trichloroethane (1,1,2-TCA) and 1,2-dichloroethane (1,2-DCA) to ethene in a mixed anaerobic enrichment culture. Here we report the further enrichment and characterization of a Dehalobacter sp. from this mixed culture in coculture with an Acetobacterium sp. Through a series of serial transfers and dilutions with acetate, H 2 , and 1,2-DCA, a stable coculture of Acetobacterium and Dehalobacter spp. was obtained, where Dehalobacter grew during dechlorination. The isolated Acetobacterium strain did not dechlorinate 1,2-DCA. Quantitative PCR with specific primers showed that Dehalobacter cells did not grow in the absence of a chlorinated electron acceptor and that the growth yield with 1,2-DCA was 6.9 (±0.7) × 10 7 16S rRNA gene copies/μmol 1,2-DCA degraded. PCR with degenerate primers targeting reductive dehalogenase genes detected three distinct Dehalobacter / Desulfitobacte...

Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater

FEMS microbiology ecology, 2017

1,2-Dichloroethane (DCA) is a problematic groundwater pollutant. Factors influencing the distribution and activities of DCA-degrading bacteria are not well understood, which has hampered their application for bioremediation. Here, we used quantitative PCR to investigate the distribution of putative DCA-dehalogenating bacteria at a DCA-impacted site in Sydney (Australia). The dehalogenase genes dhlA, tceA and bvcA were detected in all groundwater samples (n = 15), while vcrA was found in 11/15 samples. The 16S rRNA gene sequences specific to the dehalogenating genera Dehalobacter, Desulfitobacterium and Dehalogenimonas were detected in 15/15, 13/15 and 13/15 samples, respectively, while Dehalococcoides sequences were found in 9/15 samples. The tceA, bvcA and vcrA genes occurred in the same samples as Dehalococcoides and Dehalobacter. Microcosm experiments confirmed the presence of bacteria capable of dechlorination under anoxic conditions. The abundance of the dhlA gene, which is fou...

Characterization of a Microbial Consortium Capable of Rapid and Simultaneous Dechlorination of 1,1,2,2-Tetrachloroethane and Chlorinated Ethane and Ethene Intermediates

Bioremediation Journal, 2006

Mixed cultures capable of dechlorinating chlorinated ethanes and ethenes were enriched from contaminated wetland sediment at Aberdeen Proving Ground (APG) Maryland. The "West Branch Consortium" (WBC-2) was capable of degrading 1,1,2,2-tetrachloroethane (TeCA), trichloroethene (TCE), cis and trans 1,2-dichloroethene (DCE), 1,1,2-trichloroethane (TCA), 1,2-dichloroethane, and vinyl chloride to nonchlorinated end products ethene and ethane. WBC-2 dechlorinated TeCA, TCA, and cisDCE rapidly and simultaneously. A Clostridium sp. phylogenetically closely related to an uncultured member of a TCE-degrading consortium was numerically dominant in the WBC-2 clone library after 11 months of enrichment in culture. Clostridiales, including Acetobacteria, comprised 65% of the bacterial clones in WBC-2, with Bacteroides (14%), and epsilon Proteobacteria (14%) also numerically important. Methanogens identified in the consortium were members of the class Methanomicrobia, which includes acetoclastic methanogens. Dehalococcoides did not become dominant in the culture, although it was present at about 1% in the microbial population. The WBC-2 consortium provides opportunities for the in situ bioremediation of sites contaminated with mixtures of chlorinated ethenes and ethanes.

A switch of chlorinated substrate causes emergence of a previously undetected native Dehalobacter population in an established Dehalococcoides-dominated chloroethene-dechlorinating enrichment culture

FEMS microbiology ecology, 2017

Chlorobenzenes are soil and groundwater pollutants of concern which can be reductively dehalogenated by organohalide-respiring bacteria from the genera Dehalococcoides and Dehalobacter. The bioaugmentation culture KB-1 harbours Dehalococcoides mccartyi spp. that reductively dehalogenate trichloroethene to ethene. It contains more than 30 reductive dehalogenase genes; some of them are highly similar to genes found in the chlorobenzene-respiring Dehalococcoides mccartyi strain CBDB1. We explored the chlorobenzene dehalogenation capability of the KB-1 enrichment culture using 1,2,4-trichlorobenzene (1,2,4-TCB). We achieved adaptation of KB-1 to 1,2,4-TCB which is dehalogenated to a mixture of dichlorobenzenes, and subsequently to monochlorobenzene and benzene. Surprisingly, a native Dehalobacter population, and not a Dehalococcoides population, couples the dechlorination of 1,2,4-TCB to growth achieving an average yield of 1.1 ± 0.6 × 1013 cells per mole of Cl- released. Interestingly,...

Phylogenetic analysis of bacterial populations in an anaerobic microbial consortium capable of degrading saturation concentrations of tetrachloroethylene

Canadian Journal of Microbiology, 2003

An anaerobic microbial consortium able to biodegrade saturation levels of perchloroethylene (PCE) in a column containing a source zone of PCE was examined phylogenetically to determine microbial community structure and spatial variation in relation to the PCE source. The consortium was comprised of at least 34 members with 7 organisms sharing affiliations with known respiratory or cometabolic dechlorinators. Seven other organisms had their closest phylogenetic relative detected in other environments containing chlorinated compounds. Based on denaturing gradient gel electrophoresis, significant Bacteria were Dehalococcoides ethenogenes, Shewanella putrefaciens, and an Acetobacterium species. Spatial variations in community structure of the consortium relative to the PCE source zone were observed. A Pseudomonas species was predominant in a zone 30 cm from the PCE source. A Methanothrix species was predominant at points over 85 cm from the source zone. A Trichlorobacter species was det...

Two distinct Dehalobacter strains sequentially dechlorinate 1,1,1-trichloroethane and 1,1-dichloroethane at a field site treated with granular zero valent iron and guar gum

Water Research, 2020

Chlorinated ethanes are environmental pollutants found frequently at many contaminated industrial sites. 1,1,1-Trichloroethane (1,1,1-TCA) can be dechlorinated and detoxified via abiotic transformation or biologically by the action of dechlorinating microorganisms such as Dehalobacter (Dhb). At a field site, it is challenging to distinguish abiotic vs biotic mechanisms as both processes share common transformation products. In this study, we evaluated using the Dhb 16S rRNA gene and specific reductive dehalogenase genes as biomarkers for 1,1,1-TCA and 1,1-dichloroethane (1,1-DCA) dechlorination. We analyzed samples from laboratory groundwater microcosms and from an industrial site where a mixture of granular zero valent iron (ZVI) and guar gum was injected for 1,1,1-TCA remediation. Abiotic and biotic transformation products were monitored and the changes in dechlorinating organisms were tracked using quantitative PCR (qPCR) with primers targeting the Dhb 16S rRNA gene and two functional genes cfrA and dcrA encoding enzymes that dechlorinate 1,1,1-TCA to 1,1-DCA and 1,1-DCA to chloroethane (CA), respectively. The abundance of the cfrA-and dcrA-like genes confirmed that the two dechlorination steps were carried out by two distinct Dhb populations at the site. Using cell yields established in laboratory microcosms along with measured abundances of the Dhb 16S rRNA gene in site samples, biotic and abiotic transformation of 1,1,1-TCA at the site was estimated. The biomarkers used in this study proved useful for tracking biodechlorination of 1,1,1-TCA and 1,1-DCA where both abiotic (e.g. with ZVI) and biotic processes co-occur.

Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol

Journal of Bioscience and Bioengineering, 2013

A culture reductively dechlorinating 2,4,6-trichlorophenol (TCP) was enriched from a sediment contaminated with chlorinated aliphatic hydrocarbons. The culture dechlorinated 100 mM of 2,4,6-TCP to 4-chlorophenol within 15 days utilizing H 2 and a yeast extract as an electron donor and carbon source, respectively. Besides 2,4,6-TCP, the culture could also dehalogenate chlorophenols at ortho position and 2,4,6-tribromophenol at ortho and para positions, as well as chlorinated ethenes and ethanes. A 16S rRNA gene clone library analysis showed that the bacterial community was composed of members of the classes Clostridia, Bacteroidia, Spirochetes, and Epsilonproteobacteria. The phylogenetic and physiological characterization of the culture confirmed two novel Dehalobacter strains, TCP-5 and TCP-6, that were involved in the reductive dehalogenation of 2,4,6-TCP and other halogenated compounds. The study was significant as the first report to demonstrate the involvement of Dehalobacter in the reductive dehalogenation of both halogenated aromatic and aliphatic compounds.

Enrichment and Characterization of a Trichloroethene-Dechlorinating Consortium Containing Multiple “Dehalococcoides” Strains

Bioscience, Biotechnology, and Biochemistry, 2011

A microbial consortium that reductively dechlorinates trichloroethene, cis-1,2-dichloroethene (cis-DCE), and vinyl chloride (VC) to ethene with methanogenesis was enriched from chloroethene-contaminated soil from Japan. Dechlorination activity was maintained for over 4 years. Using quantitative polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analysis targeting the ''Dehalococcoides'' 16S rRNA gene, four strains were detected. Their growth and dechlorination activities were classified into two types: one that grows by converting cis-DCE to ethene and the other that grows by converting cis-DCE to VC. Then, the vcrA and bvcA genes encoding cis-DCE/VC reductive dehalogenases were detected. Inhibitors of methanogenesis (2-bromoethanesulfonate) and sulfidogenesis (molybdate) led to accumulation of cis-DCE and of VC respectively. These results suggest that methanogens and sulfate-reducing bacteria can play a significant role in dechlorination by ''Dehalococcoides.''