Biochemical Effects of Nano-Silicon Dioxide (SiO2) on Sunflower (Helianthus annuus L.) Plants: with SEM-EDX Analysis (original) (raw)

Silicon is among the most abundant elements on earth after oxygen. Studies have shown that silicon nanoparticles contribute to plant growth and development. Nano particles [NP] are important due to their unique properties associated with high surface-to-volume ratio, and they have many application areas including agricultural industry, pharmacy, and medicine. In this study, different sizes and concentrations of SiO 2 NP were applied to sunflower plants. Chlorophyll determination was made in leaf tissue, antioxidant enzyme activities, malondialdehyde (MDA), Si assay, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyzes were made in root and leaf tissues of sunflower treated with SiO 2 NP in different sizes and concentrations. According to the data we have obtained, it has been shown that silicon nanoparticles reduce the damage caused by abiotic stress together with the active defense system of plants. However, NPs are thought to trigger the formation of reactive oxygen species due to their increased antioxidant enzyme activities and cause anatomical changes, especially on the leaf surface and root tissue, as shown by SEM analysis