Knowledge of Radiation Hazards, Radiation Protection Practices and Clinical Profile of Health Workers in a Teaching Hospital in Northern Nigeria (original) (raw)

2016, Journal of Clinical and Diagnostic Research

Radiation is a component of man's physical environment, and is broadly classified into ionizing and non-ionizing radiation. The most energetic form and of major public health significance is ionizing radiation. In normal circumstances 80% of our exposure to ionizing radiation comes from natural sources of which radon gas is by far the most significant, while the other 20% comes from manmade sources, primarily medical X-rays. Use of ionizing radiation in medical imaging for diagnostic and interventional purposes has risen dramatically in recent years with a concomitant increase in exposure of patients and health workers to radiation hazards; medical and dental X-rays now constitute the major man-made sources of radiation exposure [1-3]. While reports from studies demonstrated dramatic rise in the prevalence of adverse health effects following exposure to ionizing radiation over the past two decades [4,5], the documented evidence of poor knowledge of radiation safety among various cadres of health workers at risk of occupational exposure shows the enormity of the problem at hand [6-8]. Although the adverse health effects of ionizing radiation such as cataract, skin erythema, and cancers among others, are known to vary according to dose and duration of exposure, it is assumed that there is actually no safe dose of ionizing radiation [9]. The focal point for radiation safety based on this assumption is 'the ALARA concept' [10] this entails that radiation exposure be reduced to 'As Low As Reasonably Achievable (ALARA)' but not exceeding the limit on effective dose recommended by the International Commission on Radiological Protection (ICRP) [11]. An estimated 20 to 30 percent of radiological examinations prescribed by doctors have been found to be of no use in the management of the patients for which they were ordered. Also, underestimation of doses associated with various imaging modalities was found to be prevalent among healthcare professionals [12,13]. These findings support the consensus of opinion that exposure to radiation hazards can be minimized through compliance with fundamental radiation protection principles of optimization and justification [14,15]. In recent years, accessibility to modern medical imaging machines in the healthcare facilities in Nigeria has improved tremendously; resulting in increased risk of radiation exposure to the patients and health workers. In recognition of this threat, the Nigeria Nuclear Regulating Authority (NNRA) had re-invigorated monitoring of facilities (both medical and non-medical) that use ionizing radiation in the country to enforce compliance with the Nigeria Basic Ionizing Radiation Regulations (NBIRR) 2003 [16]. The contents of the NBIRR 2003 are basically in line with the ICRP regulations. It recommended an effective dose limit of 100mSv in any period of five consecutive years (i.e., average of 20mSv per year) subjected to a maximum effective dose of 50mSv in any single calendar year for an employee aged 18 years and above and

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact