Fully Nonlinear Modeling of Nearshore Wave Propagation Including the Effects of Wave Breaking (original) (raw)

Nearshore wave modeling over spatial scales of several kilometers requires balancing the fine-scale modeling of physical processes with the model’s accuracy and efficiency. In this work, a fully nonlinear potential flow model is proposed as a compromise between simplified linear, weakly nonlinear or weakly dispersive models and direct CFD approaches. The core of present approach is the use of a series representation for the velocity potential. This series contains prescribed vertical functions and allows the determination of the velocity potential in terms of unknown horizontal functions. The resulting dimensionally reduced model retains the structure of the Hamiltonian water wave system Zakharov (1968), Craig & Sulem (1993), avoiding the solution of the Laplace problem for the potential. Instead, a numerically convenient linear system of horizontal equations needs to be solved at each step in the temporal evolution. No simplifications concerning the deformation of the physical boun...