Imaging of light emission from the expression of luciferases in living cells and organisms: a review (original) (raw)
Related papers
PLoS ONE, 2010
Background: The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multibicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo. Methodology/Principal Findings: Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH 2) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH 2 supplementation led to a 151fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background. Conclusions/Significance: The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.
Optical imaging of Renilla luciferase reporter gene expression in living mice
Proceedings of the National Academy of Sciences of the United States of America, 2001
Imaging reporter gene expression in living subjects is a rapidly evolving area of molecular imaging research. Studies have validated the use of reporter genes with positron emission tomography (PET), single photon emission computed tomography (SPECT), MRI, fluorescence with wild-type and mutants of green fluorescent protein, as well as bioluminescence using Firefly luciferase en-zyme͞protein (FL). In the current study, we validate for the first time the ability to image bioluminescence from Renilla luciferase enzyme͞protein (RL) by injecting the substrate coelenterazine in living mice. A highly sensitive cooled charge-coupled device camera provides images within a few minutes of photon counting. Cells, transiently expressing the Rluc were imaged while located in the peritoneum, s.c. layer, as well as in the liver and lungs of living mice tail-vein injected with coelenterazine. Furthermore, D-luciferin (a substrate for FL) does not serve as a substrate for RL, and coelenterazine does not serve as a substrate for FL either in cell culture or in living mice. We also show that both Rluc and Fluc expression can be imaged in the same living mouse and that the kinetics of light production are distinct. The approaches validated will have direct applications to various studies where two molecular events need to be tracked, including cell trafficking of two cell populations, two gene therapy vectors, and indirect monitoring of two endogenous genes through the use of two reporter genes.
Journal of Biomedical Optics, 2011
Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux) reporter system engineered for increased bioluminescent expression in the mammalian cellular environment. Comparison with the bioluminescent firefly luciferase (Luc) system and green fluorescent protein system under cell culture conditions demonstrated a reduced average radiance, but maintained a more constant level of bioluminescent output without the need for substrate addition or exogenous excitation to elicit the production of signal. Comparison with the Luc system following subcutaneous and intraperitoneal injection into nude mice hosts demonstrated the ability to obtain similar detection patterns with in vitro experiments at cell population sizes above 2.5 × 10 4 cells but at the cost of increasing overall image integration time.
Journal of Biomedical Optics, 2004
We have recently demonstrated that Renilla luciferase (Rluc) is a promising bioluminescence reporter gene that can be used for noninvasive optical imaging of reporter gene expression in living mice, with the aid of a cooled charged couple device (CCD) camera. In the current study, we explore the expression of a novel synthetic Renilla luciferase reporter gene (hRluc) in living mice, which has previously been reported to be a more sensitive reporter than native Rluc in mammalian cells. We explore the strategies of simultaneous imaging of both Renilla luciferase enzyme (RL) and synthetic Renilla luciferase enzyme (hRL):coelenterazine (substrate for RL/hRL) in the same living mouse. We also demonstrate that hRL:coelenterazine can yield a higher signal when compared to Firefly luciferase enzyme (FL): D-Luciferin, both in cell culture studies and when imaged from cells at the surface and from lungs of living mice. These studies demonstrate that hRluc should be a useful primary reporter gene with high sensitivity when used alone or in conjunction with other bioluminescence reporter genes for imaging in living rodents.
Eur J Nucl Med Mol Imaging, 2008
Purpose-Firefly luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter gene. Biokinetics and distribution of the substrate most likely have a significant impact on levels of light signal and therefore need to be investigated. Methods-Benzene ring 14 C(U)-labeled D-luciferin was utilized. Cell uptake and efflux assays, murine biodistribution, autoradiography and CCD-camera based optical bioluminescence imaging were carried out to examine the in vitro and in vivo characteristics of the tracer in cell culture and in living mice respectively. Results-Radiolabeled and unlabeled D-luciferin revealed comparable levels of light emission when incubated with equivalent amounts of the firefly luciferase enzyme. Cell uptake assays in pCMV-luciferase-transfected cells showed slow trapping of the tracer and relatively low uptake values (up to 22.9-fold higher in firefly luciferase gene-transfected vs. nontransfected cells,
Purpose-Firefly luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter gene. Biokinetics and distribution of the substrate most likely have a significant impact on levels of light signal and therefore need to be investigated. Methods-Benzene ring 14 C(U)-labeled D-luciferin was utilized. Cell uptake and efflux assays, murine biodistribution, autoradiography and CCD-camera based optical bioluminescence imaging were carried out to examine the in vitro and in vivo characteristics of the tracer in cell culture and in living mice respectively. Results-Radiolabeled and unlabeled D-luciferin revealed comparable levels of light emission when incubated with equivalent amounts of the firefly luciferase enzyme. Cell uptake assays in pCMV-luciferase-transfected cells showed slow trapping of the tracer and relatively low uptake values (up to 22.9-fold higher in firefly luciferase gene-transfected vs. nontransfected cells,
Thermostability of Firefly Luciferases Affects Efficiency of Detection by In Vivo Bioluminescence
Molecular Imaging, 2004
Luciferase from the North American firefly (Photinis pyralis) is a useful reporter gene in vivo, allowing noninvasive imaging of tumor growth, metastasis, gene transfer, drug treatment, and gene expression. Luciferase is heat labile with an in vitro halflife of approximately 3 min at 37°C. We have characterized wild type and six thermostabilized mutant luciferases. In vitro, mutants showed half-lives between 2-and 25-fold higher than wild type. Luciferase transfected mammalian cells were used to determine in vivo half-lives following cycloheximide inhibition of de novo protein synthesis. This showed increased in vivo thermostability in both wild-type and mutant luciferases. This may be due to a variety of factors, including chaperone activity, as steady-state luciferase levels were reduced by geldanamycin, an Hsp90 inhibitor. Mice inoculated with tumor cells stably transfected with mutant or wild-type luciferases were imaged. Increased light production and sensitivity were observed in the tumors bearing thermostable luciferase. Thermostable proteins increase imaging sensitivity. Presumably, as more active protein accumulates, detection is possible from a smaller number of mutant transfected cells compared to wild-type transfected cells. Mol Imaging (2004) 3, 324 -332.
PLoS ONE, 2011
Background: Despite a plethora of bioluminescent reporter genes being cloned and used for cell assays and molecular imaging purposes, the simultaneous monitoring of multiple events in small animals is still challenging. This is partly attributable to the lack of optimization of cell reporter gene expression as well as too much spectral overlap of the colorcoupled reporter genes. A new red emitting codon-optimized luciferase reporter gene mutant of Photinus pyralis, Ppy RE8, has been developed and used in combination with the green click beetle luciferase, CBG99.
Alternative luciferase for monitoring bacterial cells under adverse conditions
Applied and …, 2005
The availability of cloned luciferase genes from fireflies (luc) and from bacteria (luxAB) has led to the widespread use of bioluminescence as a reporter to measure cell viability and gene expression. The most commonly occurring bioluminescence system in nature is the deep-sea imidazolopyrazine bioluminescence system. Coelenterazine is an imidazolopyrazine derivative which, when oxidized by an appropriate luciferase enzyme, produces carbon dioxide, coelenteramide, and light. The luciferase from the marine copepod Gaussia princeps (Gluc) has recently been cloned. We expressed the Gluc gene in Mycobacterium smegmatis using a shuttle vector and compared its performance with that of an existing luxAB reporter. In contrast to luxAB, the Gluc luciferase retained its luminescence output in the stationary phase of growth and exhibited enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature. The work presented here demonstrated the utility of the copepod luciferase bioluminescent reporter as an alternative to bacterial luciferase, particularly for monitoring responses to environmental stress stimuli.