Dissipative parabolic equations in locally uniform spaces (original) (raw)
Abstract
Keywords Reaction-diffusion equations, Cauchy problem in R N ,dissipativeness, global attractor MSC (2000) 35K15, 35K57, 35B40, 35B41 TheCauchyproblem forasemilinear second orderparabolic equation u t =∆u + f ( x, u, ∇ u ) , ( t, x ) ∈ R + × R N ,i sc onsidered within the semigroup approach in locally uniform spacesẆ s,p U`R N´. G lobals olvability, dissipativeness and thee xistence of an attractor are established under thes ame assumptions as for problems in boundedd omains. In particular,t he condition sf( s, 0 ) < 0 , | s | >s 0 > 0 ,t ogether with gradient's "subquadratic"growthrestriction, are showntoguarantee theexistence of an attractor for theabove mentioned equation. This resultcannot be located in theprevious references devotedtoreaction-diffusion equations in the wholeof R N .
Figures (2)
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (45)
- F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differential Equations 83, 85-108 (1990).
- H. Amann, Linear and Quasilinear Parabolic Problems (Birkhäuser, Basel, 1995).
- H. Amann, M. Hieber, and G. Simonett, Bounded H∞-calculus for elliptic operators, Differential Integral Equations 3, 613-653 (1994).
- J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier- Stokes and heat equations, Trans. Amer. Math. Soc. 352, 285-310 (2000).
- J. M. Arrieta, A. N. Carvalho, and A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary conditions: uniform bounds, Comm. Partial Differential Equations 25, 1-37 (2000).
- J. M. Arrieta, J. W. Cholewa, T. Dlotko, and A. Rodriguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains, Nonlinear Anal., Theory Methods Appl. 56, 515-554 (2004).
- J. M. Arrieta, J. W. Cholewa, T. Dlotko, and A. Rodriguez-Bernal, Linear parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci. 14, 253-294 (2004).
- J. M. Arrieta and A. Rodríguez-Bernal, Non well posedness of parabolic equations with supercritical nonlinearities, Commun. Contemp. Math. 6, 733-764 (2004).
- A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A 116, 221-243 (1990).
- A. V. Babin and M. I. Vishik, Attractors of Evolution Equations (North-Holland, Amsterdam, 1991).
- A. N. Carvalho, J. W. Cholewa, and T. Dlotko, Abstract parabolic problems in ordered Banach spaces, Colloq. Math. 90, 1-17 (2001).
- A. N. Carvalho and T. Dlotko, Partly dissipative systems in uniformly local spaces, Colloq. Math. 100, 221-242 (2004).
- J. W. Cholewa and T. Dlotko, Cauchy problems in weighted Lebesgue spaces, Czechoslovak Math. J. 54, 991-1013 (2004).
- J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems (Cambridge University Press, Cam- bridge, 2000).
- P. Collet, Nonlinear dynamis of extended systems, in: From Finite to Infinite Dimensional Dynamical Systems, edited by J. C. Robinson et al. (Kluwer Academic Publishers, Dordrecht, 2001), pp. 113-143.
- P. Collet and J.-P. Eckmann, Extensive properties of the complex Ginzburg-Landau equation, Comm. Math. Phys. 200, 699-722 (1999).
- D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators (Cambridge University Press, Cambridge, 1996).
- M. A. Efendiev and S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math. 54, 625-688 (2001).
- M. A. Efendiev and S. V. Zelik, Upper and lower bounds for the Kolmogorov entropy of the attractor for the RDE in an unbounded domain, J. Dynam. Differential Equations 14, 369-403 (2002).
- E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on R N , Differential Integral Equations 9, 1147-1156 (1996).
- E. Feireisl, Ph. Laurencot, F. Simondon, and H. Toure, Compact attractors for reaction-diffusion equations in R n , C. R. Acad. Sci. Paris Sér. I Math. 319, 147-151 (1994).
- E. Feireisl, Ph. Laurencot, and F. Simondon, Global attractors for degenerate parabolic equations on unbounded domains, J. Differential Equations 129, 239-261 (1996).
- J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation I. Compactness methods, Phys. D 95, 191-228 (1996).
- J. K. Hale, Asymptotic Behavior of Dissipative Systems (Amer. Math. Soc., Providence, RI, 1988).
- J. K. Hale, Dynamics of a scalar parabolic equations, Canad. Appl. Math. Quart. 5, 209-305 (1997).
- D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics Vol. 840 (Springer, Berlin, 1981).
- M. Hieber, P. Koch Medina, and S. Merino, Linear and semilinear parabolic equation on BUC `RN ´, Math. Nach. 179, 107-118 (1996).
- T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal. 58, 181-205 (1975).
- O. A. Ladyženskaya, Attractors for Semigroups and Evolution Equations (Cambridge University Press, Cambridge, 1991).
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs Vol. 23 (Amer. Math. Soc., Providence, RI, 1967).
- A. Lunardi, Analytic Semigroup and Optimal Regularity in Parabolic Problems (Birkhäuser, Berlin, 1995).
- S. Merino, On the existence of the compact global attractor for semilinear reaction diffusion systems on R N , J. Differ- ential Equations 132, 87-106 (1996).
- A. Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity 10, 199-222 (1997).
- A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains-existence and comparison, Nonlinearity 8, 743-768 (1995).
- N. Moya, Ecuaciones Parabólicas y Sistemas de Reacción Difusión, Ph.D. thesis, Universidad Complutense de Madrid (2004).
- P. Poláčik, Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, in: Handbook of Dynamical Systems Vol. 2 (North-Holland, Amsterdam, 2002), pp. 835-883.
- A. Rodríguez-Bernal, On the construction of inertial manifolds under symmetry constraints I: abstract results, Nonlinear Anal., Theory Methods Appl. 19, 687-700 (1992).
- G. R. Sell and Y. You, Dynamics of Evolutionary Equations (Springer-Verlag, New York, 2002).
- B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7, 447-526 (1982).
- H. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems (Amer. Math. Soc., Providence, RI, 1995).
- P. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations 15, 237-256 (2002).
- J. Szarski, Differential Inequalities (PWN-Polish Sci. Publ., Warszawa, 1967).
- H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (Veb Deutscher, Berlin, 1978).
- W. Walter, Differential and Integral Inequalities (Springer, Berlin, 1970).
- S. V. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math. 56, 585-637 (2003).