Discrete Free Energy Functionals for Elastic Materials with Phase Change (original) (raw)

Abstract

We discuss two different approaches related to Γ-limits of free energy functionals. The first gives an example of how symmetry breaking may occur on the atomistic level, the second aims at deriving a general analytic theory for elasticity on the lattice scale that does not depend on an explicitly chosen reference system.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (20)

  1. Ariza, M.P., Ortiz M.: Discrete crystal elasticity and discrete dislocations in crystals. Arch. Rat. Mech. Anal., 178, 149-226 (2005)
  2. Ball, J.: Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63, 337-403 (1977)
  3. Blesgen, T.: On the competition of elastic energy and surface energy in discrete numerical schemes, to appear in Advances in Computational Math- ematics, (2006)
  4. Bonilla, L.L., Carpio, A.: Discrete models for dislocations and their motion in cubic crystals, Phys. Rev. B, 12, 1087-1097 (2005)
  5. Braides, A., Dal Maso, G. Garroni, A.: Variational formulation of soften- ing phenomena in fracture mechanics: the one-dimensional case, Arch. Rat. Mech. Anal., 146, 23-58 (1999)
  6. Braides, A. Gelli, M.S.: Limits of discrete systems without convexity hy- pothesis, Preprint SISSA (1999)
  7. Carpio, A., Chapman, S.J., Howison, S.D., Ockendon, J.R.: Dynamics of line singularities, Philosoph. Trans. Royal Soc. London Ser. A, 1731, 2013- 2024 (1997)
  8. Cato, I., Le Bris, C., Lions, P.-L.: The Mathematical Theory of Thermo- dynamic Limits: Thomas-Fermi Type Models, Oxford University Press, New York (1998)
  9. Chipot, M., Kinderlehrer, D.: Equilibrium configuration of crystals, Arch. Rat. Mech. Anal., 103, 237-277 (1988)
  10. Dacorogna, B.: Direct Methods in the Calculus of Variations, Springer, New York (1989)
  11. Fonseca, I, Tartar L.: The displacement problem for elastic crystals. Proc. Roy. Soc. Edinburgh A, 113, 159-180 (1989)
  12. Friesecke, G., Theil, F.: Validity and failure of the Cauchy-Born hypothesis in a two-dimensional spring lattice Journal of Nonlinear Science, 12, 445-478 (2002)
  13. E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell'area, Rendiconti di Matematica, 4, 95-113 (1955)
  14. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionali, Atti Accad. Naz. Lincei, 8, 277-294 (1975)
  15. Iosefescu, O, Licht, C., Michaille, G.: The variational limit of a one- dimensional discrete and statistically homogeneous system of material points, Preprint Montpellier (1999)
  16. James, R.D., Friesecke, G.: A scheme for the passage from atomistic to con- tinuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Sol., 48, 1519-1540 (2000)
  17. Mermin, N.D.: The topological theory of defects in ordered media, Reviews of Modern Physics, 51, 591-648 (1979)
  18. Ortiz, M., Phillips, R.: Nanomechanics of defects in solids, Advances in Applied Mechanics, 36, 1-79 (1999)
  19. Toulouse, G., Kleman, M.: Principles of classification of defects in ordered media, Journal de Physique, 37 L149-L151 (1976)
  20. Truskinovsky, L.: Fracture as a phase transition, Contemporary Research in the Mechanics and Mathematics of Materials (Batra R.C., Beatty, M.F., eds.), CIMNE, Barcelona, 322-332 (1996)