Humidity‐Induced Degradation Processes of Halide Perovskites Unveiled by Correlative Analytical Electron Microscopy (original) (raw)

Small Methods

Abstract

Improving the stability of lead halide perovskite solar cells (PSCs) for industrialization is currently a major challenge. It is shown that moisture induces changes in global PSC performance, altering the nature of the absorber through phase transition or segregation. Understanding how the material evolves in a wet environment is crucial for optimizing device performance and stability. Here, the chemical and structural evolution of state‐of‐the‐art hybrid perovskite thin‐film Cs0.05(MA0.15FA0.85)0.95Pb(I0.84 Br0.16)3 (CsMAFA) is investigated after aging under controlled humidity with analytical characterization techniques. The analysis is performed at different scales through Photoluminescence, X‐ray Diffraction Spectroscopy, Cathodoluminescence, Selected Area Electron Diffraction, and Energy Dispersive X‐ray Spectroscopy. From the analysis of the degradation products from the perovskite layer and by the correlation of their optical and chemical properties at a microscopic level, di...

dominique loisnard hasn't uploaded this paper.

Let dominique know you want this paper to be uploaded.

Ask for this paper to be uploaded.