Learned convex regularizers for inverse problems (original) (raw)

Adversarial Regularizers in Inverse Problems

2018

Inverse Problems in medical imaging and computer vision are traditionally solved using purely model-based methods. Among those variational regularization models are one of the most popular approaches. We propose a new framework for applying data-driven approaches to inverse problems, using a neural network as a regularization functional. The network learns to discriminate between the distribution of ground truth images and the distribution of unregularized reconstructions. Once trained, the network is applied to the inverse problem by solving the corresponding variational problem. Unlike other data-based approaches for inverse problems, the algorithm can be applied even if only unsupervised training data is available. Experiments demonstrate the potential of the framework for denoising on the BSDS dataset and for computed tomography reconstruction on the LIDC dataset.

Adversarially learned iterative reconstruction for imaging inverse problems

2021

In numerous practical applications, especially in medical image reconstruction, it is often infeasible to obtain a large ensemble of ground-truth/measurement pairs for supervised learning. Therefore, it is imperative to develop unsupervised learning protocols that are competitive with supervised approaches in performance. Motivated by the maximum-likelihood principle, we propose an unsupervised learning framework for solving ill-posed inverse problems. Instead of seeking pixel-wise proximity between the reconstructed and the ground-truth images, the proposed approach learns an iterative reconstruction network whose output matches the ground-truth in distribution. Considering tomographic reconstruction as an application, we demonstrate that the proposed unsupervised approach not only performs on par with its supervised variant in terms of objective quality measures, but also successfully circumvents the issue of over-smoothing that supervised approaches tend to suffer from. The impro...

Convex Regularization Behind Neural Reconstruction

Cornell University - arXiv, 2020

Neural networks have shown tremendous potential for reconstructing highresolution images in inverse problems. The non-convex and opaque nature of neural networks, however, hinders their utility in sensitive applications such as medical imaging. To cope with this challenge, this paper advocates a convex duality framework that makes a two-layer fully-convolutional ReLU denoising network amenable to convex optimization. The convex dual network not only offers the optimum training with convex solvers, but also facilitates interpreting training and prediction. In particular, it implies training neural networks with weight decay regularization induces path sparsity while the prediction is piecewise linear filtering. A range of experiments with MNIST and fastMRI datasets confirm the efficacy of the dual network optimization problem.

End-to-end reconstruction meets data-driven regularization for inverse problems

2021

We propose an unsupervised approach for learning end-to-end reconstruction operators for ill-posed inverse problems. The proposed method combines the classical variational framework with iterative unrolling, which essentially seeks to minimize a weighted combination of the expected distortion in the measurement space and the Wasserstein-1 distance between the distributions of the reconstruction and ground-truth. More specifically, the regularizer in the variational setting is parametrized by a deep neural network and learned simultaneously with the unrolled reconstruction operator. The variational problem is then initialized with the reconstruction of the unrolled operator and solved iteratively till convergence. Notably, it takes significantly fewer iterations to converge, thanks to the excellent initialization obtained via the unrolled operator. The resulting approach combines the computational efficiency of end-to-end unrolled reconstruction with the wellposedness and noise-stabi...

Deep Convolutional Neural Network for Inverse Problems in Imaging

IEEE Transactions on Image Processing, 2017

In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H * H, where H * is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU.

Solving ill-posed inverse problems using iterative deep neural networks

Inverse Problems, 2017

We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the 'gradient' component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a nonlinear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 × 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).

Improving Robustness of Deep-Learning-Based Image Reconstruction

2020

Deep-learning-based methods for different applications have been shown vulnerable to adversarial examples. These examples make deployment of such models in safety-critical tasks questionable. Use of deep neural networks as inverse problem solvers has generated much excitement for medical imaging including CT and MRI, but recently a similar vulnerability has also been demonstrated for these tasks. We show that for such inverse problem solvers, one should analyze and study the effect of adversaries in the measurement-space, instead of the signal-space as in previous work. In this paper, we propose to modify the training strategy of end-to-end deep-learning-based inverse problem solvers to improve robustness. We introduce an auxiliary network to generate adversarial examples, which is used in a min-max formulation to build robust image reconstruction networks. Theoretically, we show for a linear reconstruction scheme the min-max formulation results in a singular-value(s) filter regular...

From Classical to Unsupervised-Deep-Learning Methods for Solving Inverse Problems in Imaging

2020

In this thesis, we propose new algorithms to solve inverse problems in the context of biomedical images. Due to ill-posedness, solving these problems require some prior knowledge of the statistics of the underlying images. The traditional algorithms, in the field, assume prior knowledge related to smoothness or sparsity of these images. Recently, they have been outperformed by the second generation algorithms which harness the power of neural networks to learn required statistics from training data. Even more recently, last generation deep-learning-based methods have emerged which require neither training nor training data. This thesis devises algorithms which progress through these generations. It extends these generations to novel formulations and applications while bringing more robustness. In parallel, it also progresses in terms of complexity, from proposing algorithms for problems with 1D data and an exact known forward model to the ones with 4D data and an unknown parametric forward model. We introduce five main contributions. The last three of them propose deep-learning-based latest-generation algorithms that require no prior training. 1) We develop algorithms to solve the continuous-domain formulation of inverse problems with both classical Tikhonov and total-variation regularizations. We formalize the problems, characterize the solution set, and devise numerical approaches to find the solutions. 2) We propose an algorithm that improves upon end-to-end neural-network-based second generation algorithms. In our method, a neural network is first trained as a projector on a training set, and is then plugged in as a projector inside the projected gradient descent (PGD). Since the problem is nonconvex, we relax the PGD to ensure convergence to a local minimum under some constraints. This method outperforms all the previous generation algorithms for Computed Tomography (CT). 3) We develop a novel time-dependent deep-image-prior algorithm for modalities that involve a temporal sequence of images. We parameterize them as the output of an untrained neural network fed with a sequence of latent variables. To impose temporal directionality, the latent variables are assumed to lie on a 1D manifold. The network is then tuned to minimize the data fidelity. We obtain state-of-the-art results in dynamic magnetic resonance imaging (MRI) and even recover intra-frame images. iii Abstract 4) We propose a novel reconstruction paradigm for cryo-electron-microscopy (CryoEM) called CryoGAN. Motivated by generative adversarial networks (GANs), we reconstruct a biomolecule's 3D structure such that its CryoEM measurements resemble the acquired data in a distributional sense. The algorithm is pose-or-likelihood-estimation-free, needs no ab initio, and is proven to have a theoretical guarantee of recovery of the true structure. 5) We extend CryoGAN to reconstruct continuously varying conformations of a structure from heterogeneous data. We parameterize the conformations as the output of a neural network fed with latent variables on a low-dimensional manifold. The method is shown to recover continuous protein conformations and their energy landscape.

Overcoming Measurement Inconsistency In Deep Learning For Linear Inverse Problems: Applications In Medical Imaging

ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

The remarkable performance of deep neural networks (DNNs) currently makes them the method of choice for solving linear inverse problems. They have been applied to super-resolve and restore images, as well as to reconstruct MR and CT images. In these applications, DNNs invert a forward operator by finding, via training data, a map between the measurements and the input images. It is then expected that the map is still valid for the test data. This framework, however, introduces measurement inconsistency during testing. We show that such inconsistency, which can be critical in domains like medical imaging or defense, is intimately related to the generalization error. We then propose a framework that post-processes the output of DNNs with an optimization algorithm that enforces measurement consistency. Experiments on MR images show that enforcing measurement consistency via our method can lead to large gains in reconstruction performance.

Regularizing the Deep Image Prior with a Learned Denoiser for Linear Inverse Problems

2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP), 2021

We propose an optimization method coupling a learned denoiser with the untrained generative model, called deep image prior (DIP) in the framework of the Alternating Direction Method of Multipliers (ADMM) method. We also study different regularizers of DIP optimization, for inverse problems in imaging, focusing in particular on denoising and super-resolution. The goal is to make the best of the untrained DIP and of a generic regularizer learned in a supervised manner from a large collection of images. When placed in the ADMM framework, the denoiser is used as a proximal operator and can be learned independently of the considered inverse problem. We show the benefits of the proposed method, in comparison with other regularized DIP methods, for two linear inverse problems, i.e., denoising and super-resolution.