Very high resolution, altitude-corrected, TMPA-based monthly satellite precipitation product over the CONUS (original) (raw)
Related papers
Journal of Hydrometeorology, 2007
The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) provides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites, as well as gauge analyses where feasible, at fine scales (0.25°ϫ 0.25°and 3 hourly). TMPA is available both after and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave Imager precipitation products, respectively. Only the after-real-time product incorporates gauge data at the present. The dataset covers the latitude band 50°N-S for the period from 1998 to the delayed present. Early validation results are as follows: the TMPA provides reasonable performance at monthly scales, although it is shown to have precipitation rate-dependent low bias due to lack of sensitivity to low precipitation rates over ocean in one of the input products [based on Advanced Microwave Sounding Unit-B (AMSU-B)]. At finer scales the TMPA is successful at approximately reproducing the surface observation-based histogram of precipitation, as well as reasonably detecting large daily events. The TMPA, however, has lower skill in correctly specifying moderate and light event amounts on short time intervals, in common with other finescale estimators. Examples are provided of a flood event and diurnal cycle determination.
The TRMM Multi-Satellite Precipitation Analysis (TMPA)
Springer eBooks, 2009
The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) is intended to provide a "best" estimate of quasi-global precipitation from the wide variety of modern satellite-borne precipitation-related sensors. Estimates are provided at relatively fine scales (0.25°x0.25°, 3-hourly) in both real and post-real time to accommodate a wide range of researchers. However, the errors inherent in the finest scale estimates are large. The most successful use of the TMPA data is when the analysis takes advantage of the fine-scale data to create time/space averages appropriate to the user's application. We review the conceptual basis for the TMPA, summarize the processing sequence, and focus on two new activities. First, a recent upgrade to the real-time version incorporates several additional satellite data sources and employs monthly climatological adjustments to approximate the bias characteristics of the research quality post-real-time product. Second, an upgrade of the research quality post-real-time TMPA from Version 6 to Version 7 (in beta test at press time) is designed to provide a variety of improvements that increase the list of input data sets and correct several issues. Future enhancements for the TMPA will include improved error estimation, extension to higher latitudes, and a shift to a Lagrangian time interpolation scheme.
2007
The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) pro-vides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites, as well as gauge analyses where feasible, at fine scales (0.25 ° 0.25 ° and 3 hourly). TMPA is available both after and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave Imager precipitation products, respectively. Only the after-real-time product incorporates gauge data at the present. The dataset covers the latitude band 50°N–S for the period from 1998 to the delayed present. Early validation results are as follows: the TMPA provides reasonable performance at monthly scales, although it is shown to have precipitation rate–dependent low bias due to lack of sensitivity to low precipitation rates over ocean in one of the input products [based on Advanced Microwave Sounding Unit-B (AMSU-B)]. At finer scales the TMPA is successful at approximately re...
Multi-regional Satellite Precipitation Products Evaluation over Complex Terrain
Journal of Hydrometeorology, 2016
An extensive evaluation of nine global-scale high-resolution satellite-based rainfall (SBR) products is performed using a minimum of 6 years (within the period of 2000–13) of reference rainfall data derived from rain gauge networks in nine mountainous regions across the globe. The SBR products are compared to a recently released global reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study areas include the eastern Italian Alps, the Swiss Alps, the western Black Sea of Turkey, the French Cévennes, the Peruvian Andes, the Colombian Andes, the Himalayas over Nepal, the Blue Nile in East Africa, Taiwan, and the U.S. Rocky Mountains. Evaluation is performed at annual, monthly, and daily time scales and 0.25° spatial resolution. The SBR datasets are based on the following retrieval algorithms: Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA), the NOAA/Climate Prediction Center morphing technique (CMORPH), Precipit...
Error Analysis of Satellite Precipitation Products in Mountainous Basins
2014
Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards such as flash floods, shallow landslides, and debris flows, triggered by heavy precipitation events (HPEs). In situ observations over mountainous areas are limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for hydrological applications. In this study, four widely used satellite-based precipitation products [Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42, version 7 (3B42-V7), and in near?real time (3B42-RT); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)] are evaluated with respect to their performance in capturing the properties of HPEs over different basin scales. Evaluation is carried out over the upper Adige River basin (eastern Italian Alps) for an 8-yr period (2003?10). Basin-averaged rainfall derived from a dense rain gauge network in the region is used as a reference. Satellite precipitation error analysis is performed for warm (May?August) and cold (September?December) season months as well as for different quantile ranges of basin-averaged precipitation accumulations. Three error metrics and a score system are introduced to quantify the performances of the various satellite products. Overall, no single precipitation product can be considered ideal for detecting and quantifying HPE. Results show better consistency between gauges and the two 3B42 products, particularly during warm season months that are associated with high-intensity convective events. All satellite products are shown to have a magnitude-dependent error ranging from overestimation at low precipitation regimes to underestimation at high precipitation accumulations; this effect is more pronounced in the CMORPH and PERSIANN products.
Error Analysis of Satellite Rainfall Products in Mountainous Basins
Journal of Hydrometeorology, 2014
Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards such as flash floods, shallow landslides, and debris flows, triggered by heavy precipitation events (HPEs). In situ observations over mountainous areas are limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for hydrological applications. In this study, four widely used satellite-based precipitation products [Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42, version 7 (3B42-V7), and in near-real time (3B42-RT); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)] are evaluated with respect to their performance in capturing the properties of HPEs over different basin scales. Evaluation is carried out over the upper Adige River basin (eastern Italian Alps) for an 8-yr period (2003-10). Basin-averaged rainfall derived from a dense rain gauge network in the region is used as a reference. Satellite precipitation error analysis is performed for warm (May-August) and cold (September-December) season months as well as for different quantile ranges of basin-averaged precipitation accumulations. Three error metrics and a score system are introduced to quantify the performances of the various satellite products. Overall, no single precipitation product can be considered ideal for detecting and quantifying HPE. Results show better consistency between gauges and the two 3B42 products, particularly during warm season months that are associated with high-intensity convective events. All satellite products are shown to have a magnitude-dependent error ranging from overestimation at low precipitation regimes to underestimation at high precipitation accumulations; this effect is more pronounced in the CMORPH and PERSIANN products.
Assessment of satellite rainfall products over the Andean plateau
Atmospheric Research, 2016
Nine satellite rainfall estimations (SREs) were evaluated for the first time over the South American Andean plateau watershed by comparison with rain gauge data acquired between 2005 and 2007. The comparisons were carried out at the annual, monthly and daily time steps. All SREs reproduce the salient pattern of the annual rain field, with a marked north-south gradient and a lighter east-west gradient. However, the intensity of the gradient differs among SREs: it is well marked in the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 (TMPA-3B42), Precipitation Estimation from remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Global Satellite Mapping of Precipitation (GSMaP) products, and it is smoothed out in the Climate prediction center MORPHing (CMORPH) products. Another interesting difference among products is the contrast in rainfall amounts between the water surfaces (Lake Titicaca) and the surrounding land. Some products (TMPA-3B42, PERSIANN and GSMaP) show a contradictory rainfall deficit over Lake Titicaca, which may be due to the emissivity contrast between the lake and the surrounding lands and warm rain cloud processes. An analysis differentiating coastal Lake Titicaca from inland pixels confirmed this trend. The raw or Real Time (RT) products have strong biases over the study region. These biases are strongly positive for PERSIANN (above 90%), moderately positive for TMPA-3B42 (28%), strongly negative for CMORPH (−42%) and moderately negative for GSMaP (− 18%). The biases are associated with a deformation of the rain rate frequency distribution: GSMaP underestimates the proportion of rainfall events for all rain rates; CMORPH overestimates the proportion of rain rates below 2 mm day −1 ; and the other products tend to overestimate the proportion of moderate to high rain rates. These biases are greatly reduced by the gauge adjustment in the TMPA-3B42, PERSIANN and CMORPH products, whereas a negative bias becomes positive for GSMaP. TMPA-3B42 Adjusted (Adj) version 7 demonstrates the best overall agreement with gauges in terms of correlation, rain rate distribution and bias. However, PERSIANN-Adj's bias in the southern part of the domain is very low.
Evaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regions
Remote Sensing
The great success of the Tropical Rainfall Measuring Mission (TRMM) and its successor Global Precipitation Measurement (GPM) has accelerated the development of global high-resolution satellite-based precipitation products (SPP). However, the quantitative accuracy of SPPs has to be evaluated before using these datasets in water resource applications. This study evaluates the following GPM-era and TRMM-era SPPs based on two years (2014–2015) of reference daily precipitation data from rain gauge networks in ten mountainous regions: Integrated Multi-SatellitE Retrievals for GPM (IMERG, version 05B and version 06B), National Oceanic and Atmospheric Administration (NOAA)/Climate Prediction Center Morphing Method (CMORPH), Global Satellite Mapping of Precipitation (GSMaP), and Multi-Source Weighted-Ensemble Precipitation (MSWEP), which represents a global precipitation data-blending product. The evaluation is performed at daily and annual temporal scales, and at 0.1 deg grid resolution. It...
Water Resources Research, 2013
The TRMM Multi-satellite Precipitation Analysis (TMPA) system underwent a crucial upgrade in early 2009 to include a climatological calibration algorithm (CCA) to its realtime product 3B42RT, and this algorithm will continue to be applied in the future Global Precipitation Measurement era constellation precipitation products. In this study, efforts are focused on the comparison and validation of the Version 6 3B42RT estimates before and after the climatological calibration is applied. The evaluation is accomplished using independent rain gauge networks located within the high-latitude Laohahe basin and the low-latitude Mishui basin, both in China. The analyses indicate the CCA can effectively reduce the systematic errors over the low-latitude Mishui basin but misrepresent the intensity distribution pattern of medium-high rain rates. This behavior could adversely affect TMPA's hydrological applications, especially for extreme events (e.g., floods and landslides). Results also show that the CCA tends to perform slightly worse, in particular, during summer and winter, over the high-latitude Laohahe basin. This is possibly due to the simplified calibration-processing scheme in the CCA that directly applies the climatological calibrators developed within 40 latitude to the latitude belts of 40 N-50 N. Caution should therefore be exercised when using the calibrated 3B42RT for heavy rainfall-related flood forecasting (or landslide warning) over high-latitude regions, as the employment of the smooth-fill scheme in the CCA bias correction could homogenize the varying rainstorm characteristics. Finally, this study highlights that accurate detection and estimation of snow at high latitudes is still a challenging task for the future development of satellite precipitation retrievals.
Hydrology and Earth System Sciences, 2015
We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over the contiguous United States (CONUS) for the period 2002–2012. This comparison effort includes satellite multi-sensor data sets (bias-adjusted TMPA 3B42, near-real-time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation data sets are compared with surface observations from the Global Historical Climatology Network-Daily (GHCN-D) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (±6%). However, differences at the RFC are more important in particular for near-real-time 3B42RT precipitation estimates (−33 to +49%). At annual and s...