The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases (original) (raw)
Related papers
Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions
Mediators of Inflammation, 2014
The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis) are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed.
The Structure and Function of the Endothelial Glycocalyx Layer
Annual Review of Biomedical Engineering, 2007
Over the past decade, since it was first observed in vivo, there has been an explosion in interest in the thin (∼500 nm), gel-like endothelial glycocalyx layer (EGL) that coats the luminal surface of blood vessels. In this review, we examine the mechanical and biochemical properties of the EGL and the latest studies on the interactions of this layer with red and white blood cells. This includes its deformation owing to fluid shear stress, its penetration by leukocyte microvilli, and its restorative response after the passage of a white cell in a tightly fitting capillary. We also examine recently discovered functions of the EGL in modulating the oncotic forces that regulate the exchange of water in microvessels and the role of the EGL in transducing fluid shear stress into the intracellular cytoskeleton of endothelial cells, in the initiation of intracellular signaling, and in the inflammatory response.
The Structural Stability of the Endothelial Glycocalyx after Enzymatic Removal of Glycosaminoglycans
PLoS ONE, 2012
Rationale: It is widely believed that glycosaminoglycans (GAGs) and bound plasma proteins form an interconnected gel-like structure on the surface of endothelial cells (the endothelial glycocalyx layer-EGL) that is stabilized by the interaction of its components. However, the structural organization of GAGs and proteins and the contribution of individual components to the stability of the EGL are largely unknown. Objective: To evaluate the hypothesis that the interconnected gel-like glycocalyx would collapse when individual GAG components were almost completely removed by a specific enzyme. Methods and Results: Using confocal microscopy, we observed that the coverage and thickness of heparan sulfate (HS), chondroitin sulfate (CS), hyaluronic acid (HA), and adsorbed albumin were similar, and that the thicknesses of individual GAGs were spatially nonuniform. The individual GAGs were degraded by specific enzymes in a dose-dependent manner, and decreased much more in coverage than in thickness. Removal of HS or HA did not result in cleavage or collapse of any of the remaining components. Simultaneous removal of CS and HA by chondroitinase did not affect HS, but did reduce adsorbed albumin, although the effect was not large. All GAGs and adsorbed proteins are well inter-mixed within the structure of the EGL, but the GAG components do not interact with one another. The GAG components do provide binding sites for albumin. Our results provide a new view of the organization of the endothelial glycocalyx layer and provide the first demonstration of the interaction between individual GAG components.
The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review
Scandinavian journal of trauma, resuscitation and emergency medicine, 2016
The glycocalyx is a carbohydrate-rich layer that lines the luminal side of the vascular endothelium. Its soluble components exist in a dynamic equilibrium with the bloodstream and play an important role in maintaining endothelial layer integrity. However, the glycocalyx can be easily damaged and is extremely vulnerable to insults from a variety of sources, including inflammation, trauma, haemorrhagic shock, hypovolemia and ischaemia-reperfusion. Damage to the glycocalyx commonly precedes further damage to the vascular endothelium. Preclinical research has identified a number of different factors capable of protecting or regenerating the glycocalyx. Initial investigations suggest that plasma may convey protective and regenerative effects. However, it remains unclear which exact components or properties of plasma are responsible for this protective effect. Studies have reported protective effects for several plasma proteins individually, including antithrombin, orosomucoid and albumin...
Endothelial glycocalyx: sweet shield of blood vessels
Trends in cardiovascular medicine, 2007
At the time that the term glycocalyx ("sweet husk") was introduced as a description of the extracellular polysaccharide coating on cells (Bennett HS: 1963. Morphological aspects of extracellular polysaccharides. J Hist Cytochem 11:14-23.), early electron microscopic observations had shown that anionic polysaccharides were also presented by the inner surface of blood vessels but the length of these structures was considered to be small and their functional significance was unknown. Research in the past decades in the glycocalyx field has evolved, and recent estimations indicate that the endothelial glycocalyx constitutes a voluminous intravascular compartment that plays an important role in vascular wall homeostasis. Pathologic loss of glycocalyx may be associated with an impaired vascular wall protection throughout the circulatory system, whereas agonist-induced modulation of glycocalyx accessibility for circulating blood may constitute a physiologically relevant mechanism...
PloS one, 2016
Leukocyte adhesion to the endothelium is an early step in the pathogenesis of atherosclerosis. Effective adhesion requires the binding of leukocytes to their cognate receptors on the surface of endothelial cells. The glycocalyx covers the surface of endothelial cells and is important in the mechanotransduction of shear stress. This study aimed to identify the molecular mechanisms underlying the role of the glycocalyx in leukocyte adhesion under flow. We performed experiments using 3-D cell culture models, exposing human abdominal aortic endothelial cells to steady laminar shear stress (10 dynes/cm2 for 24 hours). We found that with the enzymatic degradation of the glycocalyx, endothelial cells developed a proinflammatory phenotype when exposed to uniform steady shear stress leading to an increase in leukocyte adhesion. Our results show an up-regulation of ICAM-1 with degradation compared to non-degraded controls (3-fold increase, p<0.05) and we attribute this effect to a de-regul...
Endothelial Glycocalyx as a Regulator of Fibrotic Processes
International Journal of Molecular Sciences
The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels’ mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.
The Endothelial Glycocalyx in Health and Kidney Disease: Rising Star or False Dawn?
Nephrology (Carlton, Vic.), 2017
The endothelial glycocalyx is a layer comprised of proteins and carbohydrates on the luminal surface of vascular endothelial cells, thought to have an important role in the health and function of the endothelium. Disrupted by various pathophysiological conditions and linked with clinical outcomes, it is increasingly recognised as an early indicator of endothelial injury and a potential marker of vascular injury. In this review, we discuss current methods of assessment (including novel optical approaches), evidence for its use as a marker of vascular disease and its potential role in relation to microalbuminuria and glomerular endothelial dysfunction. Therapeutic strategies for restoration of the glycocalyx following injury are also explored.