Color Superconductivity in Dense, but not Asymptotically Dense, Quark Matter (original) (raw)
2006, Series on Advances in Quantum Many-Body Theory
At ultra-high density, matter is expected to form a degenerate Fermi gas of quarks in which there is a condensate of Cooper pairs of quarks near the Fermi surface: color superconductivity. In this chapter we review some of the underlying physics, and discuss outstanding questions about the phase structure of ultradense quark matter. We then focus on describing recent results on the crystalline color superconducting phase that may be the preferred form of cold, dense but not asymptotically dense, three-flavor quark matter. The gap parameter and free energy for this phase have recently been evaluated within a Ginzburg-Landau approximation for many candidate crystal structures. We describe the two that are most favorable. The robustness of these phases results in their being favored over wide ranges of density. However, it also implies that the Ginzburg-Landau approximation is not quantitatively reliable. We describe qualitative insights into what makes a crystal structure favorable which can be used to winnow the possibilities. We close with a look ahead at the calculations that remain to be done in order to make quantitative contact with observations of compact stars.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.