Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases (original) (raw)
Abstract
Class 2 aminoacyl-tRNA synthetases, which include the enzymes for alanine, aspartlc acid, asparagine, glycine, histidlne, lysine, phenylalanine, prollne, serine and threonine, are characterised by three distinct sequence motifs 1,2 and 3 (reference 1). The structural and evolutionary relatedness of these ten enzymes are examined using alignments of primary sequences from prokaryotlc and eukaryotic sources and the known three dimensional structure of seryl-tRNA synthetase from E. coll. It is shown that motif 1 forms part of the dimer interface of seryl-tRNA synthetase and motifs 2 and 3 part of the putative active site. It Is further shown that the seven a 2 dimeric synthetases can be subdivided into class 2a (proline, threonine, histidine and serine) and class 2b (aspartlc acid, asparagine and lysine), each subclass sharing several important characteristic sequence motifs in addition to those characteristic of class 2 enzymes in general. The a^2 tetrameric enzymes (for glycine and phenylalanine) show certain special features In common as well as some of the class 2b motifs. In the alanyl-tRNA synthetase only motif 3 and possibly motif 2 can be identified. The sequence alignments suggest that the catalytic domain of other class 2 synthetases should resemble the antiparallel domain found In seryl-tRNA synthetase. Predictions are made about the sequence location of certain important helices and jS-strands In this domain as well as suggestions concerning which residues are important in ATP and amino acid binding. Strong homologies are found in the N-terminal extensions of class 2b synthetases and in the Cterminal extensions of class 2a synthetases suggesting that these putative tRNA binding domains have been added at a later stage In evolution to the catalytic domain.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (46)
- Eriani, G., Delaruc, M., Poch, O., Gangloff, J. and Moras, D., (1990a), Nature 347, 203-206.
- Cusack, S., Berthet-Colominas, C, Hartlein, M., Nassar, N. and Leberman.R., ([990),Nature 347, 249-255.
- Eriani.G., Dirheimer, G. and Gangloff, J. (1991) Nucleic Acids Res. 19 265-269.
- Burbaum, J.J., Starzyk, R.M. and Schimmel, P., (1990), Proteins!, 99-111.
- Hountondji, C, Dessen, P. and Blanquet, S., (1986), Biochimie, 68, 1071-1078.
- Brick.P., Bhat, T.N. and Blow, D.M., (1989), J.Mol.Biol., 208, 83-98.
- Brunie, S., Zelwer, C. and Risler, J-L., (1990), J. Moi. Biol. 216, 411 -424.
- Rould, M.A., Perona, J.J., Soil, D. and Steitz, T.A., (19S9),Science, 246, 1135-1142.
- Rossmann, M.G., Liljas, A., Branden, C-V. and Banaszak, L.J. (1975) In Boyer, P. D. (ed.) The Enzymes. Academic Press, New York. Vol. 1 la, p 61.
- Fraser, T. H. and Rich, A., (1975), Proc. natn. Acad. Sd. U.S.A. 72, 3044-3048.
- Sprinzl, M. and Cramer, F. (1975), Proc. naln. Acad. Sd. U.S.A. 72, 3049-3053.
- Eriani.G., Dirheimer, G. and GanglofT, J. (1990b) Nucleic Adds Res. 18 7109-7117.
- Putzer, H., Brakhage, A.A. and Grunberg-Manago, M., (1990), J.Baaeriol., 111, 4593-4602.
- Tsui, F.W.L. and Siminovitch, L., (1987), Nucleic Adds Res., IS, 3349-3367.
- Leveque, F., Plateau, P., Dessen, P. and Blanquet, S. (1990), Nucleic Adds Res. 18 305-312.
- Pape, L.K., Koerner, T.J. and Tzagoloff, (1985) J.Biol.Chem. 260, 15362-15370.
- Natsoulis, G., Hilger, F. and Fink, G.R., (1986), Cell. 46, 235-243.
- Gampel, A. and Tzagoloff, A., (1989), Proc.Natl.Acad.Sd. USA, 86, 6023-6027.
- Koemer, T.J., Myers, A. M., Lee, S., Tzagoloff, A. (1987) J.Biol.Chem. 262 3690-3696.
- Gatti, D.L. and Tzagoloff, A. (1991) J. Mol.BioL 218 557-568.
- Chang, P. K. and Dignam, J.D. (1990)7. Biol. Chem. 265 20898-20906.
- Nilsen, T.W. et al. (1988), Proc. nam.Acad.Sd. U.S.A 85 3604-3607.
- Leinfelder, W., Zehelein.E., Mandrand-Berthelot, M-A. and Bock, A., (1988), Nature, 331, 723-725.
- Forchhammer, K., Leinfelder, W. and Bock, A., (1989), Nature, 342, 453-456.20. Fersht, A.R., (1987), Biochemistry, 26, 8031-8037.
- Fersht, A.R., (1987), Biochemistry, 26, 8031-8037.
- Nassar, N and Cusack, S. Unpublished results.
- Anselme, J. and Hartlein, M. (1991) FEBS Letters 280 163-166.
- Mirande.M. and Waller, J-P., (1988), J.Biol.Chem., 263, 18443-18451.
- Moine, H. et at. (1988),/>roc. naln. Acad.Sd. U.S.A 85 7892-7896.
- Springer, M. et al. (1989) EMBO J. 8 2417-2424.
- Moine, H. et al. (1990) J. Mol. Biol. 216, 299-310.
- Hartlein, M., Madem, D. and Leberman.R., (1987), Nucleic Acids Res., 15, 1005-1017.
- Dayhoff, M. O., Barker, W.C. and Hunt, L. T., (1983), Methods Enzymol. 91, 524-545.
- Wong, J. T. (1975) Proc. natn. Acad.Sd. U.S.A. 72 1909-1912.
- Weiner, A. M. and Maizels, N. (1987) Proc. naln. Acad.Sd. U.S.A. 84 7383-7387
- Putney,S.D., Sauer,R.T. and Schimmel, P., (1981), J.Biol.Chem , 256, 198-204.
- Sellami, M., Fasiola, F., Dirheimer, G., Ebel, J-P. and GangloffJ., (1986), Nucleic Acids Res , 14, 1657-1666.
- Jacobo-Molina, A., Peterson, R. and Wang, D.C.H., (1989), J.Biol.Chem., 264, 16608-16612.
- Mechalum, Y., Fayat, G. and Blanquet, S., (1985), J.Baaeriol., 163, 787-791.
- Sanni, A., Mirande, M., Ebel, J-P., Boulanger, Y., Waller, J-P., and Fasiolo, F., (1988), J.Biol. Chem., 263, 15407-15415.
- Webster, T.A., Gibson.B.W., Keng, T., Biemann, K and Schimmel,P., (1983), J.Biol.Chem , 258, 10637-10641.
- Freedman, R., Gibson, B., Donovan, D., Biemann, K., Eisenbeis, S., Parker, J. and Schimmel, P., (1985), J.Biol.Chem., 260, 10063-10068.
- Anselme, J. and Hartlein, M (1989), Gene, 84, 481-485.
- Weygand-Durasevic, I., Johnson-Burke, D. and Soil, D., (1987), Nucleic Adds Res., 15, 1887-1904.
- Mayaux, J-F., Fayat, G., Fromant, M., Springer, M., Grunberg-Manago, M. and Blanquet, S., (1983), Proc. natn. AcadSd. U.S.A, 80, 6152-6156.
- Pape, L.K. and Tzagoloff, A., (1985), Nucleic Acids Res., 13,6171-6183.