Controlled-frequency breath swimming improves swimming performance and running economy (original) (raw)
Related papers
Journal of human kinetics, 2015
The purpose of this study was to examine the effects of training with intermittent breath holding (IBH) on respiratory parameters, arterial oxygen saturation (SpO2) and performance. Twenty-eight fin-swimming athletes were randomly divided into two groups and followed the same training for 16 weeks. About 40% of the distance of each session was performed with self-selected breathing frequency (SBF group) or IBH (IBH group). Performance time of 50 and 400 m at maximum intensity was recorded and forced expired volume in 1 s (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF) and SpO2 were measured before and after the 50 m test at baseline and post-training. Post-training, the respiratory parameters were increased in the IBH but remained unchanged in the SBF group (FEV1: 17 ±15% vs. -1 ±11%; FVC: 22 ±13% vs. 1 ±10%; PEF: 9 ±14% vs. -4 ±15%; p<0.05). Pre compared to post-training SpO2 was unchanged at baseline and decreased post-training following the 50 m test in both gr...
International Journal of Environmental Research and Public Health, 2020
The avoidance of respiratory muscle fatigue and its repercussions may play an important role in swimmers’ health and physical performance. Thus, the aim of this study was to investigate whether a six-week moderate-intensity swimming intervention with added respiratory dead space (ARDS) resulted in any differences in respiratory muscle variables and pulmonary function in recreational swimmers. A sample of 22 individuals (recreational swimmers) were divided into an experimental (E) and a control (C) group, observed for maximal oxygen uptake (VO2max). The intervention involved 50 min of front crawl swimming performed at 60% VO2max twice weekly for six weeks. Added respiratory dead space was induced via tube breathing (1000 mL) in group E during each intervention session. Respiratory muscle strength variables and pulmonary and respiratory variables were measured before and after the intervention. The training did not increase the inspiratory or expiratory muscle strength or improve spir...
The Effect of Different Training Loads on the Lung Health of Competitive Youth Swimmers
International Journal of Exercise Science, 2018
Airway hyperresponsiveness (AHR), airway inflammation, and respiratory symptoms are common in competitive swimmers, however it is unclear how volume and intensity of training exacerbate these problems. Thus, our purpose was to measure AHR, inflammation, and respiratory symptoms after low, moderate, and high training loads in swimmers. Competitive youth swimmers (n=8) completed nine weeks of training split into three blocks (Low, Moderate, and High intensity). Spirometry at rest and post-bronchial provocation [Eucapnic Voluntary Hyperpnea (EVH)] and Fractional Exhaled Nitric Oxide (FeNO) were completed at the end of each training block. A weekly self-report questionnaire determined respiratory symptoms. Session Rating of Perceived Exertion (sRPE) quantified internal training loads. Internal load was significantly lower after Moderate training (4840 ± 971 AU) than after High training (5852 ± 737 AU) (p = 0.02, d = 1.17). Pre-EVH FEV1 was significantly decreased after Moderate (4.52 ± ...
Physical Education Theory and Methodology
The study aimed to examine the effect of individualized (IT) and respiratory muscle training (RMT) on pulmonary function among collegiate swimmers. Materials and methods. The study recruited 43 healthy collegiate swimmers aged 18 to 25, and they were freestyle non-elite swimmers who swam at least three days a week. The participants were divided into three groups of Usual training (Control Group A), Respiratory muscle training (Experimental Group B) and Combination of respiratory muscle training and individualized training (Experimental Group C). The repeated measures two-way ANOVA was used to evaluate the differences within and between (time x group) the groups upon completion of the four-week intervention. Results. Both experimental groups (Group B and C) showed significant improvement within the groups. Whereas in between-group comparison, Group C (RMT and IT) showed tremendous improvement with significant differences in FVC value, predicted FVC value (percent), FEV1, FEV (percent...
The Effect of Respiratory Muscle Training on Fin-Swimmers' Performance
Journal of sports science & medicine, 2017
Although respiratory muscle functions can influence swimming performance, respiratory muscle training (RMT) is not routinely used for improving fin-swimmers´ performance. The aim of our study was to verify the benefit of a one month of RMT in young fin-swimmers. We assessed the effect of this training on respiratory muscles and on maximal underwater swimming distance. 28 fin-swimmers were randomly divided into an experimental group (EG) and a control group (CG). The study finished with 20 fin-swimmers (EG: n = 12; average age 12.0; weight 47.4 kg; height 1.58 m; CG: n = 8; age 11.5; weight 49.6 kg; height 1.53 m). Both group performed regular swimming training, during which the EG used Threshold PEP (positive expiratory pressure) and IMT (inspiratory muscle trainer) for RMT for one month. After one-month washout period, the CG also performed RMT. RMT showed significant improvement of inspiratory muscles in both groups (Z = <1.96; 2.59>; p < 0.05). Significant improvement wa...
Effect of additional respiratory muscle endurance training in young well-trained swimmers
Journal of sports science & medicine, 2013
While some studies have demonstrated that respiratory muscle endurance training (RMET) improves performances during various exercise modalities, controversy continues about the transfer of RMET effects to swimming performance. The objective of this study was to analyze the added effects of respiratory muscle endurance training (RMET; normocapnic hyperpnea) on the respiratory muscle function and swimming performance of young well-trained swimmers. Two homogenous groups were recruited: ten swimmers performed RMET (RMET group) and ten swimmers performed no RMET (control group). During the 8-week RMET period, all swimmers followed the same training sessions 5-6 times/week. Respiratory muscle strength and endurance, performances on 50- and 200-m trials, effort perception, and dyspnea were assessed before and after the intervention program. The results showed that ventilatory function parameters, chest expansion, respiratory muscle strength and endurance, and performances were improved on...