Administration of an anabolic steroid during the adolescent phase changes the behavior, cardiac autonomic balance and fluid intake in male adult rats (original) (raw)

Effects of anabolic androgenic steroids and social subjugation on behavior and neurochemistry in male rats

Pharmacology Biochemistry and Behavior, 2011

Early abuse and anabolic androgenic steroids (AAS) both increase aggression. We assessed the behavioral and neurochemical consequences of AAS, alone or in combination with social subjugation (SS), an animal model of child abuse. On P26, gonadally intact male rats began SS consisting of daily pairings with an adult male for 2 weeks followed by daily injections of the AAS, testosterone on P40. As adults, males were tested for sexual and aggressive behaviors towards females in various hormonal conditions and inter-male aggression in a neutral setting using home or opponent bedding. Neurotransmitter levels were assessed using HPLC. Results showed that AAS males displayed significantly more mounts toward sexually receptive, vaginally obstructed females (OBS) and displayed significantly more threats towards ovariectomized females. SS males mounted OBS females significantly less and were not aggressive toward females. The role of olfactory cues in a neutral setting did not affect aggression regardless of treatment. AAS significantly increased brainstem DOPAC and NE. SS decreased 5HIAA, DA, DOPAC, and NE in brainstem. 5HIAA was significantly increased in the prefrontal cortex of all experimental groups. We conclude that AAS and SS differentially affect behavior towards females as well as neurotransmitter levels.

Potential risks related to anabolic steroids use on nervous, cardiovascular and reproductive systems disorders in men

Current Issues in Pharmacy and Medical Sciences

Anabolic steroids (AS) have been a subject of intensive research for the last several decades. Due to wide use of AS in pharmacological treatment and in professional and amateur sport, it is, hence, worthwhile to describe the biochemical mechanism of the effects of AS usage in humans and its potential health risks. In this work, the relationship between diet and its effect on the level of testosterone in blood is described. Testosterone affects the nervous system, however, there is need for further researches to examine the influence of AS therapy on emotional and cognitive functioning. AS therapy has known negative effects on the cardiovascular system: cardiac hypertrophy can occur, blood pressure can vastly increased, thrombotic complications can come about. These effects are observed not only in patients who are treated with AS, but also in athletes. The paper also describes the relationship between AS and reproductive system diseases. Decreased libido and erectile dysfunction ar...

Sex- and age-specific effects of anabolic androgenic steroids on reproductive behaviors and on GABAergic transmission in neuroendocrine control regions

Brain Research, 2006

Illicit use of anabolic androgenic steroids (AAS) has become a prevalent health concern not only among male professional athletes, but, disturbingly, among a growing number of women and adolescent girls. Despite the increasing use of AAS among women and adolescents, few studies have focused on the effects of these steroids in females, and female adolescent subjects are particularly underrepresented. Among the hallmarks of AAS abuse are changes in reproductive behaviors. Here, we discuss work from our laboratories on the actions of AAS on the onset of puberty and sexual behaviors in female rodents, AAS interactions and sex-and age-specific effects of these steroids on neural transmission mediated by γ-aminobutyric acid receptors within forebrain neuroendocrine control regions that may underlie AAS-induced changes in these behaviors.

Anabolic steroids have long-lasting effects on male social behaviors

Behavioural Brain Research, 2010

Anabolic androgenic steroids (AAS) use by adolescents is steadily increasing. Adolescence involves remodeling of steroid-sensitive neural circuits that mediate social behaviors, and previous studies using animal models document effects of AAS on male social behaviors. The present experiments tested whether AAS have persistent and more pronounced behavioral consequences when drug exposure occurs during adolescence as compared to exposure in adulthood. Male Syrian hamsters were injected daily for 14 days with either vehicle or an AAS cocktail containing testosterone cypionate (2 mg/kg), nandrolone decanoate (2 mg/kg), and boldenone undecylenate (1 mg/kg), either during adolescence (27-41 days of age) or adulthood (63-77 days of age). As adults, subjects were tested two or four weeks after the last injection for either sexual behavior with a receptive female or male-male agonistic behavior in a resident-intruder test. Compared with vehicle-treated males, AAStreated males, regardless of age of treatment, displayed fewer long intromissions and a significant increase in latency to the first long intromission, indicative of reduced potential to reach sexual satiety. Increased aggression was observed in males exposed to AAS compared with males treated with vehicle, independently of age of AAS treatment. However, unlike hamsters exposed to AAS in adulthood, hamsters exposed to AAS during adolescence did not display any submissive or riskassessment behaviors up to 4 weeks after discontinuation of AAS treatment. Thus, AAS have longlasting effects on male sexual and agonistic behaviors, with AAS exposure during adolescence resulting in a more pronounced reduction in submissive behavior compared to AAS exposure in adulthood.

Anabolic steroid-induced hypogonadism – Towards a unified hypothesis of anabolic steroid action

Medical Hypotheses, 2009

Available online xxxx s u m m a r y Anabolic steroid-induced hypogonadism (ASIH) is the functional incompetence of the testes with subnormal or impaired production of testosterone and/or spermatozoa due to administration of androgens or anabolic steroids. Anabolic-androgenic steroid (AAS), both prescription and nonprescription, use is a cause of ASIH. Current AAS use includes prescribing for wasting associated conditions. Nonprescription AAS use is also believed to lead to AAS dependency or addiction. Together these two uses account for more than four million males taking AAS in one form or another for a limited duration. While both of these uses deal with the effects of AAS administration they do not account for the period after AAS cessation. The signs and symptoms of ASIH directly impact the observation of an increase in muscle mass and muscle strength from AAS administration and also reflect what is believed to demonstrate AAS dependency. More significantly, AAS prescribing after cessation adds the comorbid condition of hypogonadism to their already existing chronic illness. ASIH is critical towards any future planned use of AAS or similar compound to effect positive changes in muscle mass and muscle strength as well as an understanding for what has been termed anabolic steroid dependency. The further understanding and treatments that mitigate or prevent ASIH could contribute to androgen therapies for wasting associated diseases and stopping nonprescription AAS use. This paper proposes a unified hypothesis that the net effects for anabolic steroid administration must necessarily include the period after their cessation or ASIH.

A comparative study of the effect of the dose and exposure duration of anabolic androgenic steroids on behavior, cholinergic regulation, and oxidative stress in rats

PloS one, 2017

The aim of this study was to assess if the dose and exposure duration of the anabolic androgenic steroids (AAS) boldenone (BOL) and stanazolol (ST) affected memory, anxiety, and social interaction, as well as acetylcholinesterase (AChE) activity and oxidative stress in the cerebral cortex (CC) and hippocampus (HC). Male Wistar rats (90 animals) were randomly assigned to three treatment protocols: (I) 5 mg/kg BOL or ST, once a week for 4 weeks; (II) 2.5 mg/kg BOL or ST, once a week for 8 weeks; and (III) 1.25 mg/kg BOL or ST, once a week for 12 weeks. Each treatment protocol included a control group that received an olive oil injection (vehicle control) and AAS were administered intramuscularly (a total volume of 0.2 ml) once a week in all three treatment protocols. In the BOL and ST groups, a higher anxiety level was observed only for Protocol I. BOL and ST significantly affected social interaction in all protocols. Memory deficits and increased AChE activity in the CC and HC were f...

Consequences of Anabolic-Androgenic Steroid Abuse in Males; Sexual and Reproductive Perspective

The World Journal of Men's Health, 2022

Anabolic-androgenic steroids (AAS) represent a group of heterogeneous compounds, which include testosterone (T) and its derivate substances, largely used to enhance physical performance, sense of well-being and cosmetic appearance among athletes [1-4]. Some years after T isolation and synthesis in 1935 [5], Bøje [6] had already discussed the possible use of sex steroids in athletes. Alleged information suggests that the Ger

Behavioral effects of pubertal anabolic androgenic steroid exposure in male rats with low serotonin

2007

The goal of this study was to assess the interactive effects of chronic anabolic androgenic steroid (AAS) exposure and brain serotonin (5-hydroxytryptamine, 5-HT) depletion on behavior of pubertal male rats. Serotonin was depleted beginning on postnatal day 26 with parachlorophenylalanine (PCPA 100 mg/kg, every other day); controls received saline. At puberty (P40), half the PCPA-treated rats and half the saline-treated rats began treatment with testosterone (T, 5 mg/kg, 5 days/week). Behavioral measures included locomotion, irritability, copulation, partner preference, and aggression. Animals were tested for aggression in their home cage, both with and without physical provocation (mild tail pinch). Brain levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were determined using HPLC. PCPA significantly and substantially depleted 5-HT and 5-HIAA in all brain regions examined. Chronic T treatment significantly decreased 5-HT and 5-HIAA in certain brain areas, but to a much lesser extent than PCPA. Chronic exposure to PCPA alone significantly decreased locomotor activity and increased irritability but had no effect on sexual behavior, partner preference, or aggression. T alone had no effect on locomotion, irritability, or sexual behavior but increased partner preference and aggression. The most striking effect of combining T + PCPA was a significant increase in attack frequency as well as a significant decrease in the latency to attack, particularly following physical provocation. Based on these data, it can be speculated that pubertal AAS users with low central 5-HT may be especially prone to exhibit aggressive behavior.