Intervertebral discs exhibit both poroelastic and intrinsic viscoelastic frequency-dependent behaviour in response to six degree of freedom dynamic mechanical loads (original) (raw)
2007
Abstract
Biomechanical properties of the disc provide both flexibility and shock absorption. We hypothesised that frequency-dependent effects in shear and torsion deformations in which intrinsic viscoelasticity (solid phase) predominates would differ from compression and bending, in which fluid flow-mediated poroelasticity is also present. Disc-vertebra-disc preparations (N=8) from human lumbar spines were subjected to each of three displacements and three rotations (6 degrees of freedom - DOF) at each of four frequencies (0.001, 0.01, 0.1, and 1 Hz) after equilibration overnight under a 0.4 MPa preload in a bath of PBS at 37C with protease inhibitors. The forces and torques were recorded along with the applied translation or rotation. The stiffness (force/displacement or torque/rotation) and the phase angle (between each force and displacement) were calculated for each degree of freedom from recorded data. The stiffness significantly increased linearly with the log-frequency in most DOF (P 0.055). The increases over the four decades of frequency were 28%, 23% and 25% for antero-posterior (AP) shear, lateral shear and torsion respectively, and were 53%, 33% and 36% for compression, lateral bending and flexion. The phase angle (a measure of energy absorption) significantly decreased overall with increasing frequency in all DOF (P 0.057). The dynamic effects (stiffness increase, and phase angle decrease with frequency) were consistently greater for deformation modes in which fluid flow effects are thought to be greater. Both the solid phase viscoelasticity and the fluid phase poroelasticity of the tissue appear to contribute to the disc stiffness and energy absorption, although these differences become more apparent at 1 Hz compared to the slower frequencies.
Mack Gardner-Morse hasn't uploaded this paper.
Let Mack know you want this paper to be uploaded.
Ask for this paper to be uploaded.