Adsorption of metals by crosslinked chitosan beads in sugarcane contaminated streams (original) (raw)

Abstract

Streams situated in areas of sugarcane cultivation receive high concentrations of metal ions from the adjacent areas, causing accumulation of metals in the aquatic sediment. Several adsorbents have been used to remove metal from water. Activated carbons clays and biopolymers are among the common adsorbents utilized. Chitosan beads, an alternative biopolymer that exhibits a high affinity for metal ions, are easy to prepare under laboratory conditions, have low overall cost and can be indicated for the removal of metals from aquatic sediments. This work studied, for the first time, the possible use of Chitosan beads in the adsorption of metals from sediments of streams located in areas adjacent to sugarcane cultivation. The sediments were collected from four streams historically impacted by sugarcane; one of them is located in a preserved area, used as the control site. The sediments were evaluated for adsorption of Cr, Cu, Zn, Mn and Mg. The results showed that the maximum adsorption of metals in chitosan beads (containing only 5.5% of chitosan) were obtained in São João Stream, such as: 0.65 mg kg −1 for Cr 6+ , 2.85 mg kg −1 for Cu 2+ , 2.5 mg kg −1 for Mg 2+ and 0.85 mg kg −1 for Zn 2+. For manganese, the maximum adsorption was 0.84 mg kg −1 , obtained for the Agua Sumida Stream. The adsorption had high affinity for Cu, Zn and Cr and low affinity for Mg and Mn. Chitosan presented potential and viability for use in the remediation of the impacts of metals on aquatic sediment systems, with high adsorption and capacity to be applied "in loco".

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (46)

  1. M.E. Goher, H.I. Farhat, M.H. Abdo, S.G. Salem, Metal pollution assessment in the surface sediment of Lake Nasser, Egypt, Egypt J Aquat Res 40 (3) (2014) 213-224.
  2. J.J. Corbi, S. Trivinho-Strixino, Relationship between sugar cane cultivation and stream macroinvertebrate communities, Braz. Arch. Biol. Technol. 51 (4) (2008) 769-779.
  3. J.J. Corbi, P. Kleine, S. Trivinho-Strixino, Are aquatic insect species sensitive to banana plant cultivation? Ecol. Indicat. 25 (2013) 156-161.
  4. J.J. Corbi, S. Trivinho-Strixino, Chironomid species are sensitive to sugar-cane cultivation, Hydrobiologia 785 (2017) 91-99.
  5. M. Komárek, J. Zeman, Dynamics of Cu , Zn , Cd , and Hg release from sediments at surface conditions, Bull. Geosci. 79 (2) (2004) 99-106.
  6. M.P. Di Nanno, G. Curutchet, S. Ratto, Anaerobic sediment potential acidification and metal release risk assessment by chemical characterization and batch re- suspension experiments, J. Soils Sediments 7 (3) (2007) 187-194.
  7. FAO-Food and Agriculture Organization, FAOSTAT, (2014) http://www.fao.org/ home/en/ , Accessed date: 29 January 2018.
  8. CONAB, Companhia Nacional de Abastecimento, (2016) http://www.conab.gov.br , Accessed date: 29 January 2018.
  9. M.O.S. Dias, A.V. Ensinas, S.A. Nebra, R. Maciel Filho, C.E.V. Rossell, M.R.W. Maciel, Production of bioethanol and other bio-based materials from su- garcane bagasse: integration to conventional bioethanol production process, Chem. Eng. Res. Des. 87 (9) (2009) 1206-1216.
  10. L.A. Martinelli, S. Filoso, Expansion of sugarcane ethanol production in Brazil: environmental and social challenges, Ecol. Appl. 18 (4) (2008) 885-898.
  11. Z. Atafar, A. Mesdaghinia, J. Nouri, M. Homaee, M. Yunesian, M. Ahmadimoghaddam, A.H. Mahvi, Effect of fertilizer application on soil heavy metal concentration, Environ. Monit. Assess. 160 (1-4) (2010) 83-89.
  12. A. Angelotti-Netto, S. Crestana, S.C. Oliveira, R.V. Barbosa, Metais pesados prove- nientes de atividade agrícola: formas, prevenção e controle, in: E. Espíndola, E. Wendland (Eds.), Bacia Hidrográfica: Diversas Abordagens Em Pesquisa, 2004, p. 412 São Carlos.
  13. L.B. Liboni, L.O. Cezarino, Social and environmental impacts of the sugarcane in- dustry, Fut Stud Rese J Trends Strateg 4 (1) (2012) 196-227.
  14. J.J. Corbi, S. Trivinho-Strixino, A. dos Santos, M. Del Grande, Diagnóstico Ambiental de Metais e Organoclorados em Córregos Adjacentes a Áreas de Cultivo de Cana-de-Açúcar (Estado de São Paulo, Brasil), Quim. Nova 29 (1) (2006) 61-65.
  15. J.J. Corbi, C.G. Froehlich, S. Trivinho-Strixino, A. dos Santos, Bioaccumulation of metals in aquatic insect of streams located in areas with sugar cane cultivation, Quim. Nova 33 (3) (2010) 644-648.
  16. P. Govind, Heavy metals causing toxicity in animals and fishes, Res. J. Anim., Vet. Fish. Sci. 2 (2) (2014) 17-23.
  17. J.J. Corbi, C. Geromel-Costa, G.R. Gorni, V. Colombo-Corbi, L. Rios, Environmental diagnosis of metals in streams near sugarcane cultivation areas: current and his- torical analysis in the central region of the State of São Paulo, An. Acad. Bras. Cienc. 90 (3) (2018).
  18. H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and in- dustrial wastes as adsorbents, HBRC J 9 (3) (2013) 276-282 2013.
  19. I.C.S. Grem, B.N.B. Lima, W.F. Carneiro, Y.G.C. Queirós, C.R.E. Mansur, Chitosan microspheres applied for removal of oil from produced water in the oil industry, Polímeros. 23 (6) (2013) 705-711.
  20. W.S. Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: a review, Carbohydr. Polym. 83 (2011) 1446-1456.
  21. A. Bhatnagar, M. Sillanpää, Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater -a short review, Adv. Colloid Interface Sci. 152 (2009) 26-38.
  22. E. Guibal, C. Milot, J.M. Tobin, Metal-anion sorption by chitosan beads: equilibrium and kinetic studies, Ind Eng Chem Res. 37 (97) (1998) 1454-1463.
  23. G.Z. Kyzas, D.N. Bikiaris, Recent modifications of chitosan for adsorption applica- tions: a critical and systematic review, Mar. Drugs 13 (2015) 312-337.
  24. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from con- taminated water: a review, J J Hazard Mater 97 (1-3) (2003) 219-243.
  25. C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: chemistry, so- lubility and fiber formation, Prog Polym Sci 34 (2009) 641-678.
  26. A. Anithaa, S. Sowmyaa, P.T. Sudheesh Kumar, S. Deepthi, K.P. Chennazhi, H. Ehrlich, M. Tsurkan, R. Jayakumar, Chitin and chitosan in selected biomedical applications, Prog Polym Sci 39 (2014) 1644-1667.
  27. E. Guibal, Interactions of metal ions with chitosan-based sorbents: a review, Separ. Purif. Technol. 38 (1) (2004) 43-74.
  28. Lazaridis and Keenan 2010.
  29. G.Z. Kyzas, D.N. Bikiaris, A.C. Mitropoulos, Chitosan adsorbents for dye removal: a review, Polym. Int. 66 (2017) 1800-1811.
  30. R.A.A. Muzzarelli, Potential of chitin/chitosan-bearing materials for uranium re- covery: an interdisciplinary review, Carbohydr. Polym. 84 (2011) 54-63.
  31. J.P.H.B. Ometo, L.A. Martinelli, M.V. Ballester, A. Gessner, A.V. Krusche, R.L. Victoria, M. Williams, Effects of land use on water chemistry and macro- invertebrates in two streams of the Piracicaba river basin, south-east Brazil, Freshw. Biol. 44 (2) (2000) 327-337.
  32. M. Callisto, F.A. Esteves, Composição granulométrica do sedimento de um lago amazônico impactado por rejeito de bauxita e um lago natural, Acta Limnol. Bras. 8 (1996) 115-126.
  33. A. Hirai, H. Odani, A. Nakajima, Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy, Polym. Bull. 26 (1991) 87-94.
  34. A. Fiamingo, S.P. Campana-Filho, Structure, morphology and properties of genipin- crosslinked carboxymethylchitosan porous membranes, Carbohydr. Polym. 143 (2016) 155-163.
  35. R.C. Goy, Estudos de Obtenção e Caracterização de Esferas Entrecruzadas de Quitosana e de Filmes Ultrafinos Depositados sobre Vidro, Universidade de São Paulo, 2007.
  36. R.C. Goy, O.B.G. Assis, S. Campana-Filho, Produção de Esferas de quitosana: meio para interação com metais em fase aquosa, Rev Biotecnologia Cienc Desenvolv 33 (2004) 30-34.
  37. F.C.F. De Paula, A.A. Mozeto, Biogeochemical evolution of trace elements in a pristine watershed in the Brazilian southeastern coastal region, Appl. Geochem. 16 (9-10) (2001) 1139-1151.
  38. W. Mertz, Trace Elements in Human and Animal Nutrition, 5nd ed., Academic, London, 1986.
  39. V.F. Melo, M. Andrade, A.H. Batista, N. Favaretto, M.T. Grassi, M.S. De Campos, Chumbo e zinco em águas e sedimentos de área de mineração e metalurgia de metais, Quim. Nova 35 (1) (2012) 22-29.
  40. J.C. Rocha, A.H. Rosa, Substâncias Húmicas Aquáticas: Interação Com Espécies Metálicas, (2003) São Paulo. Editora Unesp.
  41. S. Baken, F. Degryse, L. Verheyen, R. Merckx, E. Smolders, Metal complexation and by anthropogenic ligands, Environ. Sci. Technol. 45 (7) (2011) 2584-2590.
  42. P.K. Dutta, J. Duta, V.S. Tripathi, Chitin and chitosan: chemistry, properties and applications, J. Sci. Ind. Res. 63 (1) (2004) 20-31.
  43. T.C. Yang, R.R. Zall, R.R, Absorption of metals by natural polymers generated from seafood processing wastes, Ind. Eng. Chem. Res. 23 (1) (1984) 168-172.
  44. C. Sampaio, L.S. Frota, H.S. Magalhães, L.M. Dutra, D.C. Queiroz, R.S. Araújo, H. Becker, J.R. de Souza, N.M. Ricardo, M.T. Trevisan, Chitosan/mangiferin par- ticles for Cr(VI) reduction and removal, Int. J. Biol. Macromol. 78 (2015) 273-279.
  45. Z. Abdeen, S.G. Mohammad, M.S. Mahmoud, Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution, Environ Nanotechnol Monit Manage 3 (2015) 1-9.
  46. S.E. Cahyaningrum, N. Narsito, S.J. Santoso, R. Agustini, Adsorption of Mg(II) ion from aqueous solution on chitosan beads and chitosan powder, J Coast Develop 13 (3) (2010) 179-184.