Thermo-Mechanical Responses of an Annular Cylinder with Temperature Dependent Material Properties under Thermoelasticity without Energy Dissipation (original) (raw)
The present work is concerned with thermoelasticity without the energy dissipation theory for a problem of an infinitely long and isotropic annular cylinder of temperature dependent physical properties. We employ the thermoelasticity theory of GN-II and derive the basic governing equations with variable material properties. The formulation is then applied to solve a boundary value problem of an annular cylinder with its inner boundary assuming to be stress free and subjected to exponential decay in temperature and sinusoidal temperature distribution. The outer boundary is also assumed to be stress free and is maintained at reference temperature in both cases. We solve the non-linear coupled differential equations by applying the finite difference approach efficiently. We analyze the numerical results in a detailed way with the help of different graphs. The effects of temperature dependency of material properties on the thermo-mechanical responses for two different time dependent temperature distributions applied at the inner boundary are highlighted.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.