A computational study of integer programming algorithms based on Barvinok's rational functions (original) (raw)
2005, Discrete Optimization
Related papers
A Computational Status Update for Exact Rational Mixed Integer Programming
2021
The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 6.6x over the original framework and 2.8 times as many instances solved within a time limit of two hours.
Contemporary Approaches to the Solution of the Integer Programming Problem
2003
The purpose of this thesis is to provide analysis of the modem development of the methods for solution to the integer linear programming problem. The thesis simultaneously discusses some main approaches that lead to the development of the algorithms for the solution to the integer linear programming problem. Chapter 1 introduces the Generalized Linear Programming Problem alongside with the properties of a solution to the Linear Programming Problem. The simplex procedure presented to solve the Linear Programming Problem by adding slack variables along with the artificial-basis technique. Chapter 2 refers to the primal-dual simplex procedure. The dual simplex algorithm reflects the dual simplex procedure. Chapter 3 discusses the mixed and alternative formulations of the integer programming problem. Chapter 4 considers the optimality conditions with the imposed relaxations to solve the Linear Programming Relaxation Problem. The methods of the Integer Programming are introduced for the ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.