Fish oil decreases the severity of treatment-related adverse events in gastrointestinal cancer patients undergoing chemotherapy: A randomized, placebo-controlled, triple-blind clinical trial (original) (raw)

Fish oil effects on quality of life, body weight and free fat mass change in gastrointestinal cancer patients undergoing chemotherapy: A triple blind, randomized clinical trial

Journal of Functional Foods, 2017

The effects of fish oil supplementation for nine weeks on quality of life, body weight and muscle mass change in gastrointestinal cancer patients during chemotherapy was investigated. Forty-five patients with colorectal or gastric cancer initiating chemotherapy treatment were studied in a triple-blind, placebo controlled trial. Patients were randomly assigned to receive 3.6 g/day of fish oil (1.55 g EPA + DHA; n = 22) or placebo (n = 23). Body weight, body composition and quality of life were assessed at baseline and at week 9. Pooled analysis did not show statistical significance between the two groups for weight and free-fat mass change. However, subgroup analyses demonstrated that fish oil prevented loss of muscle mass. Patients that took fish oil had lower scores for nausea/vomiting and appetite loss after the first nine weeks of chemotherapy, but had higher constipation scores. Thus, the results indicate that certain groups of patients with gastrointestinal cancer may benefit from fish oil intake concomitant with chemotherapy.

Fish Oil Decreases C-Reactive Protein/Albumin Ratio Improving Nutritional Prognosis and Plasma Fatty Acid Profile in Colorectal Cancer Patients

Lipids, 2013

Previous studies have shown that n-3 polyunsaturated fatty acids n-3 (n-3 PUFA) have several anticancer effects, especially attributed to their ability to modulate a variety of genomic and immune responses. In this context, this randomized, prospective, controlled clinical trial was conducted in order to check whether supplementation of 2 g/day of fish oil for 9 weeks alters the production of inflammatory markers, the plasma fatty acid profile and the nutritional status in patients with colorectal cancer (CRC). Eleven adults with CRC in chemotherapy were randomized into two groups: (a) supplemented (SG) daily with 2 g/day of encapsulated fish oil [providing 600 mg/day of eicosapentaenoic acid (EPA) ? docosahexaenoic acid (DHA)] for 9 weeks (n = 6), and (b) control (CG) (n = 5). All outcomes were evaluated on the day before the first chemotherapy session and 9 weeks later. Plasma TNF-a, IL-1b, IL-10 and IL-17A, the pro/anti-inflammatory balance (ratio TNF-a/IL-10 and IL-1b/IL10) and serum albumin, showed no significant changes between times and study groups (p [ 0.05). C-reactive protein (CRP) and the CRP/ albumin ratio showed opposite behavior in groups, significantly reducing their values in SG (p \ 0.05). Plasma proportions of EPA and DHA increased 1.8 and 1.4 times, respectively, while the ARA reduced approximately 0.6 times with the supplementation (9 weeks vs baseline, p \ 0.05). Patients from SG gained 1.2 kg (median) while the CG lost -0.5 kg (median) during the 9 weeks of chemotherapy (p = 0.72). These results demonstrate that 2 g/ day of fish oil for 9 weeks of chemotherapy improves CRP values, CRP/albumin status, plasma fatty acid profile and potentially prevents weight loss during treatment.

Vitamin E content in fish oil emulsion does not prevent lipoperoxidative effects on human colorectal tumors

Nutrition, 2013

Objective: The anticancer action exerted by polyunsaturated fatty acid peroxidation may not be reproduced by commercially available lipid emulsions rich in vitamin E. Therefore, we evaluated the effects of fish oil (FO) emulsion containing a-tocopherol 0.19 g/L on human colorectal adenocarcinoma cells and tumors. Methods: HT-29 cell growth, survival, apoptosis, and lipid peroxidation were analyzed after a 24-h incubation with FO 18 to 80 mg/L. Soybean oil (SO) emulsion was used as an isocaloric and isolipidic control. In vivo, nude mice bearing HT-29 tumors were sacrificed 7 d after an 11-d treatment with intravenous injections of FO or SO 0.2 g • kg À1 • d À1 FO or SO to evaluate tumor growth, necrosis, and lipid peroxidation. Results: The FO inhibited cell viability and clonogenicity in a dose-dependent manner, whereas SO showed no significant effect compared with untreated controls. Lipid peroxidation and cell apoptosis after treatment with FO 45 mg/L were increased 2.0-fold (P < 0.01) and 1.6-fold (P ¼ 0.04), respectively. In vivo, FO treatment did not significantly affect tumor growth. However, immunohistochemical analyses of tumor tissue sections showed a decrease of 0.6-fold (P < 0.01) in the cell proliferation marker Ki-67 and an increase of 2.3-fold (P ¼ 0.03) in the necrotic area, whereas malondialdehyde and total peroxides were increased by 1.9-fold (P ¼ 0.09) and 7.0-fold (P < 0.01), respectively, in tumors of FO-treated compared with untreated mice. Conclusion: These results suggest that FO but not SO has an antitumor effect that can be correlated with lipid peroxidation, despite its vitamin E content.

Fish Oil Supplementation Improves Neutrophil Function During Cancer Chemotherapy

Abstract Cancer chemotherapy is associated with neutropenia and impaired neutrophil function. This study aimed to investigate whether supplementation with low dose fish oil (FO), providing n-3 polyunsaturated fatty acids, in cancer patients receiving chemotherapy after surgical tumor (mainly gastrointestinal) removal is able to improve the function of blood neutrophils. Patients (n = 38) receiving chemotherapy (5-fluorouracil and leu- covorin) were randomized into two groups; one group (control) did not receive a supplement, while the other group (FO) received 2 g FO/day for 8 weeks; the FO provided 0.3 g eicosapentaenoic acid plus 0.4 g docosa- hexaenoic acid per day. Patients in the control group lost an average of 2.5 kg of weight over the 8 weeks of the study. The number of blood polymorphonuclear cells (PMNC), mainly neutrophils, and their functions (phagocytosis and hydrogen peroxide production) decreased in the control group (average decreases of approximately 30, 45 and 17%, respectively). FO prevented these decreases and actually increased body weight (average of 1.7 kg weight gain; p \ 0.002 vs. control group), PMNC number (aver- age 29% increase), phagocytosis (average 14% increase) and superoxide production (average 28% increase). FO may be useful in preventing chemotherapy-induced decline in neutrophil number and function.

Improved antioxidant status by omega-3 fatty acid supplementation in breast cancer patients undergoing chemotherapy: a case series

Journal of Medical Case Reports, 2015

Introduction: Breast cancer is the second leading cause of cancer death in women worldwide and the third most common cancer in India. Various studies have reported that chemotherapy reduces the antioxidant status in patients with cancer. A diet rich in omega-3 fatty acids has been shown to offer protection against breast cancer through various mechanisms. However, there are no reports suggesting a relationship between consumption of omega-3 fatty acids during chemotherapy and antioxidant status in patients with breast cancer. Thus, the objective of this study was to evaluate whether fish oil supplementation could improve the antioxidant status of five women with breast cancer undergoing chemotherapy. Case presentation: We report on the cases of five Indian women with breast cancer, in the age group of 34 to 60 years, who had poorly differentiated breast carcinoma and underwent modified radical mastectomy. Postsurgery, the patients were given fish oil capsules containing eicosapentaenoic acid (180mg) and docosahexaenoic acid (120mg)/capsule during their chemotherapy. Informed consent was obtained from each participant and they were followed-up to the completion of six chemotherapy cycles at 21-day intervals. Conclusions: The supplementation of fish oil significantly (p < 0.01) increased superoxide dismutases, glutathione reductase and catalase activity in red blood cells as well as the total plasma antioxidant status in the patients. This approach of using omega-3 fatty acids as an adjuvant treatment for breast cancer may help oncologists to manage the side effects of ongoing chemotherapy by improving the antioxidant status in patients.

Antitumor and anti-cachectic effects of shark liver oil and fish oil: comparison between independent or associative chronic supplementation in Walker 256 tumor-bearing rats

Abstract Background: Shark liver oil (SLOil) and fish oil (FOil), which are respectively rich in alkylglycerols (AKGs) and n-3 polyunsaturated fatty acids (PUFAs), are able to reduce the growth of some tumors and the burden of cachexia. It is known that FOil is able to reduce proliferation rate and increase apoptotic cells and lipid peroxidation of tumor cells efficiently. However, there are few reports revealing the influence of SLOil on these parameters. In the current study, effects of FOil chronic supplementation on tumor growth and cachexia were taken as reference to compare the results obtained with SLOil supplementation. Also, we evaluated if the association of SLOil and FOil was able to promote additive effects. Methods: Weanling male Wistar rats were divided into 4 groups: fed regular chow (C), supplemented (1 g/kg body weight) with SLOil (CSLO), FOil (CFO) and both (CSLO + FO). After 8 weeks half of each group was inoculated with Walker 256 cells originating new groups (W, WSLO, WFO and WSLO + FO). Biochemical parameters of cachexia, tumor weight, hydroperoxide content, proliferation rate and percentage of apoptotic tumor cells were analysed. Fatty acids and AKG composition of tumor and oils were obtained by high performance liquid chromatography and gas chromatography – mass spectrometry, respectively. Statistical analysis was performed by unpaired t-test and one-way ANOVA followed by a post hoc Tukey test. Results: Fourteen days after inoculation, SLOil was able to restore cachexia parameters to control levels, similarly to FOil. WSLO rats presented significantly lower tumor weight (40%), greater tumor cell apoptosis (~3-fold), decreased tumor cell proliferation (35%), and higher tumor content of lipid hydroperoxides (40%) than observed in W rats, but FOil showed more potent effects. Supplementation with SLOil + FOil did not promote additive effects. Additionally, chromatographic results suggested a potential incorporation competition between the n-3 fatty acids and the AKGs in the tumor cells’ membranes. Conclusions: SLOil is another marine source of lipids with similar FOil anti-cachectic capacity. Furthermore, despite being less potent than FOil, SLOil presented significant in vivo antitumor effects. These results suggest that the chronic supplementation with SLOil may be adjuvant of the anti-cancer therapy.

Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation

Metabolic demand and altered supply of essential nutrients is poorly characterised in patients with advanced cancer. A possible imbalance or deficiency of essential fatty acids is suggested by reported beneficial effects of fish oil supplementation. To assess fatty acid status (composition of plasma and neutrophil phospholipids) in advanced cancer patients before and after 14 days of supplementation (12+1 g day 71) with fish (eicosapentaenoic acid, and docosahexaenoic acid) or placebo (olive) oil. Blood was drawn from cancer patients experiencing weight loss of 45% body weight (n=23). Fatty acid composition of plasma phospholipids and the major phospholipid classes of isolated neutrophils were determined using gas liquid chromatography. At baseline, patients with advanced cancer exhibited low levels (530% of normal values) of plasma phospholipids and constituent fatty acids and elevated 20 : 4 n-6 content in neutrophil phospholipids. High n-6/n-3 fatty acid ratios in neutrophil and plasma phospholipids were inversely related to body mass index. Fish oil supplementation raised eicosapentaenoic acid and docosahexaenoic acid content in plasma but not neutrophil phospholipids. 20 : 4 n-6 content was reduced in neutrophil PI following supplementation with fish oil. Change in body weight during the supplementation period related directly to increases in eicosapentaenoic acid in plasma. Advanced cancer patients have alterations in lipid metabolism potentially due to nutritional status and/or chemotherapy. Potential obstacles in fatty acid utilisation must be addressed in future trials aiming to improve outcomes using nutritional intervention with fish oils.

Fish Oil Decreases Oxidative DNA Damage by Enhancing Apoptosis in Rat Colon Chemo-protective effect of membrane targeting bio-actives on colon cancer View project simultaneous confidence bands View project

To determine if dietary fish oil protects against colon cancer by decreasing oxidative DNA damage at the initiation stage of colon tumorigenesis, oxidative DNA damage, proliferation, and apoptosis were assessed by colonic crypt cell position using quantitative immunohistochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG), Ki-67, and TUNEL assay, respectively. Sixty rats were provided one of two diets (corn oil or fish oil) and dextran sodium sulfate (DSS, an inducer of oxidative DNA damage) treatments (no DSS, 3% DSS, or DSS withdrawal). Fish oil feeding resulted in lower 8-OHdG levels (P = 0.038), higher levels of apoptosis (P = 0.035), and a lower cell proliferative index (P = 0.05) compared with corn oil feeding. In the top third of the crypt, fish oil caused an incremental stimulation of apoptosis with increased DNA damage (P = 0.043), whereas there was no such relationship with corn oil. Because polyps and tumors develop from DNA damage that leads to loss of growth and death control, the significant difference in fish oil vs. corn oil on these variables may account, in part, for the observed protective effect of fish oil against oxidatively induced colon cancer.