Effect of the propagation path on lightning-induced transient fields (original) (raw)
Related papers
Propagation of lightning generated transient electromagnetic fields over finitely conducting ground
Journal of Atmospheric and Solar-Terrestrial Physics, 2000
This paper elucidates the propagation eects on lightning generated electric ®elds. The mathematics of the problem is described and a simple procedure that can be used to predict the propagation eect is outlined together with its experimental con®rmation. This procedure is used to analyse the propagation eects, over distances less than about 300 km, on the radiation ®elds of negative ®rst return strokes, positive ®rst return strokes and subsequent return strokes in triggered lightning¯ashes. From the results, empirical equations that can be used to correct for the propagation eects are extracted. The results show that the attenuation due to propagation eects of the initial peak amplitudes may dier in negative and positive return strokes and that the data from triggered lightning¯ashes should be applied with caution in correcting for the propagation eects of natural lightninḡ ashes. 7
Journal of Geophysical Research, 1988
The "transmission-line" model of return-stroke radiation, proposed by Uman and and invoked frequently thereafter to deduce peak currents from remote fields or to estimate propagation velocities from measured fields and currents, has never received a thorough experimental test. During the summer of 1985 at the Kennedy Space Center in Florida, we were able to measure peak currents (with a coaxial shunt), two-dimensional average propagation speeds (with a high-speed streak camera), and electric field waveforms (at 5.15-km range) for a number of subsequent return strokes in rocket-triggered lightning flashes. Because of the temporal ambiguity on the streak-camera films, it has not been possible to identify individual velocity measurements with particular strokes for which current and field data are available. Three multistroke flashes, however, each yielded a tight cluster of velocity measurements and a group of peak field to peak current ratios, though not necessarily for the same strokes. A further six flashes provided more current and field measurements for which no velocity information was obtained, and velocity measurements only are available for still other flashes. It is shown that these data indicate reasonable agreement between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. The previously observed difference between current and radiation-field waveforms suggests a modification of the model, involving two wave fronts traveling upward and downward away from a junction point a short distance above the ground, which substantially improves the agreement between measured and inferred propagation speeds.
Journal of Geophysical Research: Atmospheres, 2008
1] In this paper, the developed formulation, which we shall call the ''reference'' one, is used to assess the validity of the most popular simplified approach for the calculation of the lightning electromagnetic field over a conducting earth, namely, the Cooray-Rubinstein (CR) approximation. This formula provides a simple method to evaluate the radial component of the electric field which is the component most affected by the finite ground conductivity and which plays an important role within the Agrawal et al. (1980) field-to-transmission line-coupling model. Several configurations are examined, with different values for the ground conductivity and different field observation points. A thorough analysis of all the simulated field components is carried out and comparisons are also made with the ''ideal'' field, namely, the field that would be present under the assumption of perfectly conducting ground. It is shown that for channel base current typical of subsequent strokes and for very low conductivities, the CR formula exhibits some deviations from the reference one but it still represents a conservative estimation of the radial field component, since it behaves as un upper bound for the exact curve. The developed algorithm is characterized by fast performances in terms of CPU time, lending itself to be used for several applications, including a coupling code for lightning induced overvoltages calculations.
Analysis of Lightning-Radiated Electromagnetic Fields in the Vicinity of Lossy Ground
IEEE Transactions on Electromagnetic Compatibility, 2005
An antenna theory (AT) approach in the frequency domain is presented to compute electromagnetic fields radiated by a lightning return stroke. The lightning channel is modeled as a lossy-wire monopole antenna (a wire antenna with distributed resistance) energized by a current source at its base, and the ground is modeled as a lossy half-space. The method of moments is used for solving the governing electric field integral equation (EFIE) in the frequency domain. The resultant current distribution along the channel is used to calculate electromagnetic fields at different distances from the channel. All field components are evaluated using a rapid but accurate procedure based on a new approximation of Sommerfeld integrals. In contrast with the previous models, the approach proposed here is characterized by a self-consistent treatment of different field components in air or on the surface of a lossy half-space. It is shown that the omission of surface wave terms in the general field equations, as done in the perfect-ground approximation, can strongly affect model-predicted field components.
Electromagnetic models of the lightning return stroke
Journal of Geophysical Research, 2007
1] Lightning return-stroke models are needed for specifying the source in studying the production of transient optical emission (elves) in the lower ionosphere, the energetic radiation from lightning, and characterization of the Earth's electromagnetic environment, as well as studying lightning interaction with various objects and systems. Reviewed here are models based on Maxwell's equations and referred to as electromagnetic models. These models are relatively new and most rigorous of all models suitable for computing lightning electromagnetic fields. Maxwell's equations are numerically solved to yield the distribution of current along the lightning channel. Different numerical techniques, including the method of moments (MoM) and the finite difference time domain (FDTD) method, are employed. In order to achieve a desirable current-wave propagation speed (lower than the speed of light in air), the channel-representing wire is embedded in a dielectric (other than air) or loaded by additional distributed series inductance. Capacitive loading has been also suggested. The artificial dielectric medium is used only for finding the distribution of current along the lightning channel, after which the channel is allowed to radiate in air. Resistive loading is used to control current attenuation with height. In contrast with distributed circuit and so-called engineering models, electromagnetic return-stroke models allow a self-consistent full-wave solution for both lightning-current distribution and resultant electromagnetic fields. In this review, we discuss advantages and disadvantages of four return-stroke channel representations: a perfectly conducting/resistive wire in air, a wire embedded in a dielectric (other than air), a wire in air loaded by additional distributed series inductance, and a wire in air having additional distributed shunt capacitance. Further, we describe and compare different methods of excitation used in electromagnetic return-stroke models: closing a charged vertical wire at its bottom with a specified grounded circuit, a delta-gap electric field source, and a lumped current source. Finally, we review and compare representative numerical techniques used in electromagnetic modeling of the lightning return stroke: MoMs in the time and frequency domains and the FDTD method. We additionally consider the so-called hybrid model of the lightning return stroke that employs a combination of electromagnetic and circuit theories and compare this model to electromagnetic models. Citation: Baba, Y., and V. A. Rakov (2007), Electromagnetic models of the lightning return stroke,
Journal of Geophysical Research, 2007
1] In this paper, simultaneous GPS time-stamped measurements of the electric and magnetic fields at three distances and of the return stroke current associated with lightning strikes to the Toronto CN Tower (553 m) during the summer of 2005 are presented. The lightning return stroke current was measured using a Rogowski coil installed at a height of 474 m above ground level (AGL). The vertical component of the electric field and the azimuthal component of the magnetic field were measured simultaneously at distances of 2.0 km, 16.8 km, and 50.9 km from the CN Tower. The propagation path from the CN Tower to the first two stations (2.0 and 16.8 km) was along the soil and through the Toronto city, whereas for the third location (50.9 km) the propagation path was nearly entirely across Lake Ontario. The waveforms of the electric and magnetic fields at 16.8 km and 50.9 km exhibit a first zero crossing about 5 ms after the onset of the return stroke. This early zero crossing is part of a narrow undershoot. For fields at 50.9 km the expected zero crossing at about 40 ms is also observed. Metallic beams and other conducting parts in buildings on which electric and magnetic field sensors were located cause an enhancement effect on the measured fields. Although an enhancement can be identified both on the electric and the magnetic fields, the degree of enhancement is actually more significant for the electric field than for the magnetic field. It is shown that the value of the wave impedance (E-field peak to H-field peak ratio) could give an estimate of the enhancement effect of the building on the electric field. Propagation effects (decrease of field amplitude and increase of its risetime) can also be observed in experimental records. It is shown that the fields at 50.9 km are less affected by such attenuation, compared to those at 16.8 km, presumably because the path of propagation is mostly across Lake Ontario. Measured waveforms are compared with theoretical predictions obtained using the five engineering return stroke models extended to include the presence of the strike object, namely, transmission line (TL), modified transmission line (MTLL and MTLE), Bruce-Golde (BG), and traveling current source (TCS) models. A reasonable agreement is found with all five engineering models for the magnetic field waveforms at the three considered distances, although the peak values of the computed fields are systematically about 25% lower than measured values. None of the models was able to reproduce the early zero crossing and the narrow undershoot. As far as the electric field is concerned, larger differences have been observed between simulations and measurements. This may be due to the fact that the enhancement effect of the building on the electric field is stronger than that on the magnetic field. The expression relating current and field peaks associated with strikes to tall structures is also tested JOURNAL
Journal of Geophysical Research, 2007
1] In this paper, simultaneous GPS time-stamped measurements of the electric and magnetic fields at three distances and of the return stroke current associated with lightning strikes to the Toronto CN Tower (553 m) during the summer of 2005 are presented. The lightning return stroke current was measured using a Rogowski coil installed at a height of 474 m above ground level (AGL). The vertical component of the electric field and the azimuthal component of the magnetic field were measured simultaneously at distances of 2.0 km, 16.8 km, and 50.9 km from the CN Tower. The propagation path from the CN Tower to the first two stations (2.0 and 16.8 km) was along the soil and through the Toronto city, whereas for the third location (50.9 km) the propagation path was nearly entirely across Lake Ontario. The waveforms of the electric and magnetic fields at 16.8 km and 50.9 km exhibit a first zero crossing about 5 ms after the onset of the return stroke. This early zero crossing is part of a narrow undershoot. For fields at 50.9 km the expected zero crossing at about 40 ms is also observed. Metallic beams and other conducting parts in buildings on which electric and magnetic field sensors were located cause an enhancement effect on the measured fields. Although an enhancement can be identified both on the electric and the magnetic fields, the degree of enhancement is actually more significant for the electric field than for the magnetic field. It is shown that the value of the wave impedance (E-field peak to H-field peak ratio) could give an estimate of the enhancement effect of the building on the electric field. Propagation effects (decrease of field amplitude and increase of its risetime) can also be observed in experimental records. It is shown that the fields at 50.9 km are less affected by such attenuation, compared to those at 16.8 km, presumably because the path of propagation is mostly across Lake Ontario. Measured waveforms are compared with theoretical predictions obtained using the five engineering return stroke models extended to include the presence of the strike object, namely, transmission line (TL), modified transmission line (MTLL and MTLE), Bruce-Golde (BG), and traveling current source (TCS) models. A reasonable agreement is found with all five engineering models for the magnetic field waveforms at the three considered distances, although the peak values of the computed fields are systematically about 25% lower than measured values. None of the models was able to reproduce the early zero crossing and the narrow undershoot. As far as the electric field is concerned, larger differences have been observed between simulations and measurements. This may be due to the fact that the enhancement effect of the building on the electric field is stronger than that on the magnetic field. The expression relating current and field peaks associated with strikes to tall structures is also tested JOURNAL
Electromagnetic Fields of a Lightning Return Stroke in Presence of a Stratified Ground
IEEE Transactions on Electromagnetic Compatibility, 2014
We present an analysis of the nearby electromagnetic fields generated by lightning discharges in the presence of a horizontally stratified, two-layer ground. To the best of our knowledge, this is the first time the effect of ground stratification on underground fields generated by lightning is analyzed. The analysis is performed by solving Maxwell's equations using the finitedifference time-domain technique. The return stroke channel is modeled using the modified transmission line model with exponential decay. The effect of the soil stratification on both above-ground fields and the fields penetrating into the ground is illustrated and discussed for two different cases characterized, respectively, by an upper layer more conductive than the lower level, and vice versa. The analysis was carried out for close distances (10 m-100 m from the channel). It is shown that, for these distances, the ground stratification does not significantly affect the electromagnetic fields above the ground. The above-ground vertical electric field and the azimuthal component of the magnetic field can be calculated assuming the ground as a perfectly conducting plane. The above-ground horizontal electric field is essentially determined by the characteristics of the conductive layer and it can be computed considering a homogeneous ground characterized by the conductive layer conductivity as long as the depth of the upper layer remains below 10 m or so. In general, the fields penetrating into the ground are markedly affected by the soil stratification. The electromagnetic field components inside the stratified soil are generally characterized by faster rise times compared to those of the field components in the case of a homogeneous ground with the upper layer characteristics. The peak value of the horizontal electric field is found to be very sensitive to the ground stratification. The horizontal electric field peak decreases considerably in the presence of a lower layer of higher conductivity. On the other hand, the presence of a lower layer with lower conductivity results in an increase of the peak value of the underground horizontal electric field. Index Terms-Electromagnetic fields, finite-difference time domain (FDTD), lightning, stratified media. I. INTRODUCTION O NE of the first studies on the propagation of electromagnetic waves along a stratified medium is due Wait who
Underground electromagnetic fields generated by the return strokes of lightning flashes
IEEE Transactions on Electromagnetic Compatibility, 2001
In this paper, equations are developed in the time domain to represent lightning generated electromagnetic (EM) fields at different depths below the ground surface. The equations connect underground EM fields to surface fields that can easily be measured or calculated. Numerous examples are given to illustrate how the signature of the electric and magnetic field vary as a function of depth as well as conductivity.
CHARACTERISTICS OF LIGHTNING VHF RADIATION NEAR THE TIME OF RETURN STROKES
Journal of Geophysical Research, 1984
By using a crossed base line interferometer, lightning VHF source positions correlated in time with electric field change measurements have been obtained. We present data in this paper showing azimuth and elevation pictures with high time resolution of the VHF (34.3 MHz) radiation for events near the time of return strokes. From their common characteris-