CXC Chemokine Ligand 4 Induces a Unique Transcriptome in Monocyte-Derived Macrophages (original) (raw)

The Journal of Immunology CXC Chemokine Ligand 4 Induces a Unique Transcriptome

2014

In atherosclerotic arteries, blood monocytes differentiate to macrophages in the presence of growth factors, such as macrophage colony-stimulation factor (M-CSF), and chemokines, such as platelet factor 4 (CXCL4). To compare the gene expression signature of CXCL4-induced macrophages with M-CSF–induced macrophages or macrophages polarized with IFN-g/LPS (M1) or IL-4 (M2), we cultured primary human peripheral blood monocytes for 6 d. mRNA expression was measured by Affymetrix gene chips, and differences were analyzed by local pooled error test, profile of complex functionality, and gene set enrichment analysis. Three hundred seventy-five genes were differentially expressed between M-CSF – and CXCL4-induced macrophages; 206 of them overexpressed in CXCL4 macrophages coding for genes implicated in the inflammatory/immune response, Ag processing and presentation, and lipid metabolism. CXCL4-induced macrophages overexpressed some M1 and M2 genes and the corresponding cytokines at the prot...

Macrophage Phenotype Modulation by CXCL4 in Atherosclerosis

Frontiers in physiology, 2012

During atherogenesis, blood monocytes transmigrate into the subendothelial space and differentiate toward macrophages and foam cells. The major driver of monocyte-macrophage differentiation is macrophage colony-stimulating factor (M-CSF). M-CSF-induced macrophages are important promoters of atherogenesis as demonstrated in M-CSF and M-CSF receptor knock out mice. However, M-CSF is not the only relevant promoter of macrophage differentiation. The platelet chemokine CXCL4 also prevents monocyte apoptosis and promotes macrophage differentiation in vitro. It is secreted from activated platelets and has effects on various cell types relevant in atherogenesis. Knocking out the Pf4 gene coding for CXCL4 in Apoe(-/-) mice leads to reduced atherogenesis. Thus, it seems likely that CXC4-induced macrophages may have specific pro-atherogenic capacities. We have studied CXC4-induced differentiation of human macrophages using gene chips, systems biology, and functional in vitro and ex vivo experi...

CXCL4-Induced Macrophages: A Novel Therapeutic Target in Human Atherosclerosis?

Atherogenesis, 2012

Atherosclerosis and its consequences (i.e. myocardial infarction and cardiac death) remain the major cause of morbidity and mortality in Western countries (Roger et al. 2011). Despite clinical advances that have substantially improved outcomes in patients suffering from coronary artery disease, including pharmacological interventions (e.g. novel anti platelet therapies, statins, etc.) as well as interventional and surgical therapies (e.g. drug-eluting stents), there is still a huge demand for improved diagnostic tools to identify patients at risk for adverse events as well as therapeutic means to prevent adverse events in these patients. Biomarkers such as high sensitivity CRP (Ridker 2007) or high sensitivity troponin T (Kurz et al. 2011) have brought some improvement in identifying patients requiring more intense treatment; however, the clinical need for better tools remains. An important concept that may help to improve clinical care for patients with coronary artery disease is the inducement of plaque stability. Atherosclerotic lesions can show features of plaque stability or plaque instability (Naghavi et al. 2003a, Naghavi et al. 2003b). Stable plaques are characterized by a thick fibrous cap and a small necrotic core. By contrast, unstable plaques display a thin fibrous cap and a large necrotic core consisting of apoptotic macrophages, foam cells, and smooth muscle cells. Unstable plaques are more likely to rupture, and plaque rupture may subsequently result in thrombosis and occlusion of the vessel leading to a myocardial infarction or stroke. A promising approach to identify potential markers of plaque instability may be the study of atherogenesis on a cellular and molecular level. During the development of atherosclerotic lesions, blood monocytes adhere to the activated endothelium, transmigrate into the subendothelial space, and differentiate towards macrophages, dendritic cells, or foam cells (Galkina & Ley 2009). Among the various leukocyte types involved in atherogenesis, monocytes and monocyte-derived macrophages represent the major fraction. The monocyte-macrophage differentiation process is affected by the extracellular matrix as well as by the combination of chemokines and cytokines representing the micromilieu of the plaque (Shashkin et al. 2005). In addition, cell-cell interactions may also affect the fate of monocytes within the atherosclerotic plaque. Monocyte-derived cells secrete chemokines, cytokines, and other mediators, leading to attraction of other immune cells and thereby promoting plaque progression and plaque instability (Shashkin et al. 2005). While it was initially thought that monocyte-derived macrophages represent a homogenous population www.intechopen.com

Modulation of CXCR4 expression and SDF-1a functional activity during differentiation of human monocytes and macrophages

1999

Chemoattraction of monocytes by the CXC chemokine stromal cell-derived factor-1␣ (SDF-1␣) and its receptor CXCR4 may be involved in vascular diseases like atherosclerosis. We studied the regulation of CXCR4 transcription and SDF-1induced functional responses in human monocytes during their differentiation in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF), oxidized low-density lipoprotein (Ox-LDL), and unmodified LDL. Our results reveal that the rapid decline of SDF-1-mediated [Ca 2؉ ] i influx after monocyte isolation is followed by a gradual functional restoration and a concomitant reexpression of CXCR4 mRNA over time. A further three-to fourfold induction of CXCR4 mRNA occurred in macrophage-derived foam cells on treatment with Ox-LDL. HL-60 cells induced with phorbol myristate acetate (PMA) showed a rapid fourfold stimulation of CXCR4 mRNA within 1 h, declining to barely detectable levels at 3 h, with eventual restoration over time, mirroring the expression pattern in monocytes. Surface expression of CXCR4 is maintained in HL-60 cells during PMA-induced differentiation, as demonstrated by flow cytometry. GM-CSF had no effect on CXCR4 mRNA in HL-60 cells and does not cause its down-regulation in human macrophages.

Modulation of CXCR4 expression and SDF-1α functional activity during differentiation of human monocytes and macrophages

Journal of Leukocyte Biology, 1999

Chemoattraction of monocytes by the CXC chemokine stromal cell-derived factor-1α (SDF-1α) and its receptor CXCR4 may be involved in vascular diseases like atherosclerosis. We studied the regulation of CXCR4 transcription and SDF-1-induced functional responses in human monocytes during their differentiation in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF), oxidized low-density lipoprotein (Ox-LDL), and unmodified LDL. Our results reveal that the rapid decline of SDF-1-mediated [Ca2+]i influx after monocyte isolation is followed by a gradual functional restoration and a concomitant re-expression of CXCR4 mRNA over time. A further three- to fourfold induction of CXCR4 mRNA occurred in macrophage-derived foam cells on treatment with Ox-LDL. HL-60 cells induced with phorbol myristate acetate (PMA) showed a rapid fourfold stimulation of CXCR4 mRNA within 1 h, declining to barely detectable levels at 3 h, with eventual restoration over time, mirroring the expres...

Atherosclerosis: role of chemokines and macrophages

Expert Reviews in Molecular Medicine, 2001

Atherosclerosis is a pathological process that takes place in the major arteries and is the underlying cause of heart attacks, stroke and peripheral artery disease. The earliest detectable lesions, called fatty streaks, contain macrophage foam cells that are derived from recruited monocytes. More-advanced atherosclerotic lesions, called fibro-fatty plaques, are the result of continued monocyte recruitment and smooth muscle cell migration and proliferation. Variable numbers of CD4+ T cells are found in atherosclerotic lesions, and cytokines secreted by T helper 1 (Th1)- or Th2-type cells can have a profound influence on macrophage gene expression within atherosclerotic plaques. This review briefly addresses the key features of macrophage biology and discusses the factors that influence the growth and development of atherosclerotic lesions (atherogenesis). It then considers the potential role of chemokines in mediating monocyte recruitment and macrophage differentiation within atheros...

Pathophysiological relevance of macrophage subsets in atherogenesis

Thrombosis and haemostasis, 2016

Macrophages are highly heterogeneous and plastic cells. They were shown to play a critical role in all stages of atherogenesis, from the initiation to the necrotic core formation and plaque rupture. Lesional macrophages primarily derive from blood monocyte, but local macrophage proliferation as well as differentiation from smooth muscle cells have also been described. Within atherosclerotic plaques, macrophages rapidly respond to changes in the microenvironment, shifting between pro- (M1) or anti-inflammatory (M2) functional phenotypes. Furthermore, different stimuli have been associated with differentiation of newly discovered M2 subtypes: IL-4/IL-13 (M2a), immune-complex (M2b), IL-10/glucocorticoids (M2c), and adenosine receptor agonist (M2d). More recently, additional intraplaque macrophage phenotypes were also recognized in response to CXCL4 (M4), oxidized phospholipids (Mox), haemoglobin/haptoglobin complexes (HA-mac/M(Hb)), and heme (Mhem). Such macrophage polarization was des...

Expression of chemokine (C–C motif) ligand 18 in human macrophages and atherosclerotic plaques

Atherosclerosis, 2009

Objective: Using gene expression profiling, we aimed to identify genes that are predominantly expressed in human carotid atherosclerotic plaques. Such genes may be important in atherogenesis and pathophysiology of the plaque, and genes that encode for secreted proteins may be potential biomarkers for atherosclerosis and cardiovascular disease. Methods: DNA microarray generated expression profiles of human carotid atherosclerotic plaques were compared to expression profiles of 80 different human tissues and cell types, to identify plaque-specific genes. Results: We identified the chemokine (C-C motif) ligand 18 (CCL18) as predominantly expressed in human carotid plaque. Immunohistochemistry showed that CCL18 protein was localized to a subset of macrophages in carotid plaques. Monocyte-derived macrophages from subjects with atherosclerosis had threefold higher expression of CCL18 than macrophages from control subjects (p = 0.012). Subjects with A/G genotype of the rs2015086 SNP in the promoter region of the CCL18 gene had threefold higher macrophage expression of CCL18 than subjects with A/A genotype (p = 0.049), but we found no association of this SNP with an increased risk of coronary heart disease. We also compared serum levels of CCL18 from subjects with symptomatic carotid artery disease with control subjects. There were no differences in serum levels of CCL18 between the two groups, however CCL18 correlated with measurements of adiposity. Conclusion: CCL18 is predominantly expressed in human atherosclerotic plaques and may participate in the atherosclerotic plaque formation.

Diverse Roles of Macrophages in Atherosclerosis: From Inflammatory Biology to Biomarker Discovery

Mediators of Inflammation, 2012

Cardiovascular disease, a leading cause of mortality in developed countries, is mainly caused by atherosclerosis, a chronic inflammatory disease. Macrophages, which differentiate from monocytes that are recruited from the blood, account for the majority of leukocytes in atherosclerotic plaques. Apoptosis and the suppressed clearance of apoptotic macrophages (efferocytosis) are associated with vulnerable plaques that are prone to rupture, leading to thrombosis. Based on the central functions of macrophages in atherogenesis, cytokines, chemokines, enzymes, or microRNAs related to or produced by macrophages have become important clinical prognostic or diagnostic biomarkers. This paper discusses the impact of monocyte-derived macrophages in early atherogenesis and advanced disease. The role and possible future development of macrophage inflammatory biomarkers are also described.