Population structure and historical biogeography of European Arabidopsis lyrata (original) (raw)

Contrasting Patterns of Genetic Structuring in Natural Populations of Arabidopsis lyrata Subsp. petraea across Different Regions in Northern Europe

PLoS ONE, 2014

Level and partitioning of genetic diversity is expected to vary between contrasting habitats, reflecting differences in strength of ecological and evolutionary processes. Therefore, it is necessary to consider processes acting on different time scales when trying to explain diversity patterns in different parts of species' distributions. To explore how historical and contemporary factors jointly may influence patterns of genetic diversity and population differentiation, we compared genetic composition in the perennial herb Arabidopsis lyrata ssp. petraea from the northernmost parts of its distribution range on Iceland to that previously documented in Scandinavia. Leaf tissue and soil were sampled from ten Icelandic populations of A. lyrata. Seedlings were grown from soil samples, and tissue from above-ground and seed bank individuals were genotyped with 21 microsatellite markers. Seed bank density in Icelandic populations was low but not significantly different from that observed in Norwegian populations. While within-population genetic diversity was relatively high on Iceland (H E = 0.35), among-population differentiation was low (F ST = 0.10) compared to Norwegian and Swedish populations. Population differentiation was positively associated with geographical distance in both Iceland and Scandinavia, but the strength of this relationship varied between regions. Although topography and a larger distribution range may explain the higher differentiation between mountainous Norwegian relative to lowland populations in Sweden, these factors cannot explain the lower differentiation in Icelandic compared to Swedish populations. We propose that low genetic differentiation among Icelandic populations is not caused by differences in connectivity, but is rather due to large historical effective population sizes. Thus, rather than contemporary processes, historical factors such as survival of Icelandic lineages in northern refugia during the last glacial period may have contributed to the observed pattern.

History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants

Ecology Letters, 2009

Climatic history and ecology are considered the most important factors moulding the spatial pattern of genetic diversity. With the advent of molecular markers, species’ historical fates have been widely explored. However, it has remained speculative what role ecological factors have played in shaping spatial genetic structures within species. With an unprecedented, dense large-scale sampling and genome-screening, we tested how ecological factors have influenced the spatial genetic structures in Alpine plants. Here, we show that species growing on similar substrate types, largely determined by the nature of bedrock, displayed highly congruent spatial genetic structures. As the heterogeneous and disjunctive distribution of bedrock types in the Alps, decisive for refugial survival during the ice ages, is temporally stable, concerted post-glacial migration routes emerged. Our multispecies study demonstrates the relevance of particular ecological factors in shaping genetic patterns, which should be considered when modelling species projective distributions under climate change scenarios.

High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae) indicates long isolation between the Carpathians and the Eastern Alps and Last Glacial survival in several Carpathian regions

Molecular Ecology, 2008

A survey of amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) variation was conducted to elucidate the phylogeography of Campanula alpina, a key species of silicicolous alpine grasslands in the Carpathians with a disjunct distribution in the Eastern European Alps. The Carpathians experienced a different glacial history from the Alps: local glaciers were present only in the highest massifs, while alpine habitats extended over larger areas related to their present distribution in this region. We asked: (i) whether in the Carpathians a high-mountain plant exhibits a complex phylogeographical structure or rather signatures of recent migrations, and (ii) whether the disjunct part of the species' distribution in the Alps resulted from a recent colonization from the Carpathians or from a restricted expansion from separate Eastern Alpine refugia. Our study revealed a clear phylogeographical pattern in AFLPs supported by congruent groups of distinct cpDNA haplotypes. Highest genetic differentiation was observed between the Alps and the Carpathians, indicating a long-term isolation between populations from these two mountain ranges. Further genetic division within the Carpathians suggests that current species' distribution is composed of several groups which have been isolated from each other for a long period. One genetic break separates Western from Southeastern Carpathian material, which is in line with a classical biogeographical boundary. A further, strongly supported genetic group was identified at the southwestern edge of the Carpathian arch. In the Eastern Alps, genetic traces of glacial survival in separate refugial areas in the calcareous northern part and the siliceous central part were found.

Pattern of genetic differentiation in Gentiana pannonica Scop.: did subalpine plants survive glacial events at low altitudes in Central Europe?

Plant Systematics and Evolution, 2012

The molecular population structure of 20 populations of the subalpine plant Gentiana pannonica was studied by use of amplified fragment length polymorphism (AFLP) and sequencing of non-coding regions of plastid DNA. Of the populations sampled, 18 were native (11 were from the Eastern Alps, which is the distribution centre of the species, and seven were from the Bohemian Forest, which is on the margin of the distribution range), and two were from the Giant Mts and of unclear status. No plastid DNA polymorphisms were found within the entire 6,185 bp investigated. The AFLP data revealed grouping of populations at the regional level. However, differentiation at the regional level (10.3 %) and at the interpopulation level (14.2 %) was low. Even though current populations are isolated and contain small numbers of individuals, the within-population variation (75.511 %) was high. Genetic variation was higher for alpine populations than for Bohemian Forest populations, probably because of fundamental differences in historical changes in population size between these regions. Within-population variation was intermediate for populations in the Giant Mts. The results indicate the possibility of a large distribution of species in the unglaciated areas of Central Europe, irrespective of altitude, during the late Pleistocene and early Holocene. Our results do not confirm that G. pannonica was introduced in the Giant Mts, and native status in the Giant Mts is possible.

Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation

Molecular Ecology, 2012

Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran's eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of

Molecular evidence for glacial refugia of mountain plants in the European Alps

Molecular Ecology, 2005

Many mountain ranges have been strongly glaciated during the Quaternary ice ages, and the locations of glacial refugia of mountain plants have been debated for a long time. A series of detailed molecular studies, investigating intraspecific genetic variation of mountain plants in the European Alps, now allows for a first synopsis. A comparison of the phylogeographic patterns with geological and palaeoenvironmental data demonstrates that glacial refugia were located along the southwestern, southern, eastern and northern border of the Alps. Additional glacial refugia were present in central Alpine areas, where highelevation plants survived the last glaciation on ice-free mountain tops. The observed intraspecific phylogeographies suggest general patterns of glacial survival, which conform to well-known centres of Alpine species diversity and endemism. This implies that evolutionary or biogeographic processes induced by climatic fluctuations act on gene and species diversity in a similar way.

High genetic differentiation in the alpine plantCampanula alpinaJacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps

Molecular Ecology, 2008

A survey of amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) variation was conducted to elucidate the phylogeography of Campanula alpina, a key species of silicicolous alpine grasslands in the Carpathians with a disjunct distribution in the Eastern European Alps. The Carpathians experienced a different glacial history from the Alps: local glaciers were present only in the highest massifs, while alpine habitats extended over larger areas related to their present distribution in this region. We asked: (i) whether in the Carpathians a high-mountain plant exhibits a complex phylogeographical structure or rather signatures of recent migrations, and (ii) whether the disjunct part of the species' distribution in the Alps resulted from a recent colonization from the Carpathians or from a restricted expansion from separate Eastern Alpine refugia. Our study revealed a clear phylogeographical pattern in AFLPs supported by congruent groups of distinct cpDNA haplotypes. Highest genetic differentiation was observed between the Alps and the Carpathians, indicating a long-term isolation between populations from these two mountain ranges. Further genetic division within the Carpathians suggests that current species' distribution is composed of several groups which have been isolated from each other for a long period. One genetic break separates Western from Southeastern Carpathian material, which is in line with a classical biogeographical boundary. A further, strongly supported genetic group was identified at the southwestern edge of the Carpathian arch. In the Eastern Alps, genetic traces of glacial survival in separate refugial areas in the calcareous northern part and the siliceous central part were found.

Glacial refugia: sanctuaries for allelic richness, but not for gene diversity

Trends in Ecology & Evolution, 2001

Glacial refugia are generally expected to harbor higher levels of genetic diversity than are areas that have been colonized after the retreat of the glaciers because colonization often involves only a few individuals.A new paper by Comps et al. challenges this expectation by demonstrating a more complex situation in the European beech Fagus sylvatica, for which some measures of genetic diversity are higher in newly colonized areas than in refugia.The key to understanding this counter-intuitive result rests both in the estimators used to measure genetic diversity and in the processes affecting these estimators during postglacial recolonization.

Spatial genetic structure of Campanula thyrsoides across the European Alps: Indications for glaciation-driven allopatric subspeciation

Perspectives in Plant Ecology, Evolution and Systematics, 2011

Quaternary climate change had profound impacts on the geographical distribution and genetic structure of plant species which is hypothesized to have triggered allopatric speciation due to spatial isolation. However, evidence is scarce despite recent advances that indicate glacial history and substrate requirements as main drivers of spatial genetic structures. Here we built upon these studies to test the role of glaciations on the morphological and ecological differentiation within the calcicolous Campanula thyrsoides across its European Alpine distribution range. We collected samples from 51 populations (1173 plants), used five microsatellite markers, estimated diversity (N a , H E ) and differentiation (D est , G ST est , F ST ) and applied Bayesian clustering analysis and tessellation methods. We found support for four genetically distinct groups of populations, arranged from West to East: (i) France and Western Switzerland, (ii) Central and most of Eastern Switzerland, (iii) parts of Eastern Switzerland and Central Austria, and (iv) Southeastern Austria, Slovenia and Northeastern Italy. Among-subspecies variance was 8.4% and each subspecies was highly differentiated (C.*thyrsoides: D est = 0.47; C.*carniolica: D est = 0.58). Geographic structuring of withinpopulation diversity was not related to refugia outside of previously-glaciated terrain but to subspecies: the more thermophilic C.*carniolica showed significantly lower levels of within-population diversity and higher numbers of private alleles. The location of the genetic break lines between these four groups of populations corresponds to well-known biogeographic barriers. However, the phylogeographic pattern has elements formerly found in both calcicolous and silicicolous species and thus questions the generality of substrate-related patterns. Within C.*thyrsoides, population admixture upon secondary contact may have led to high genetic diversity across the distribution range. Given the geographic and genetic differences of the subspecies we conclude that differentiation between C.*thyrsoides and C.*carniolica represents a case of glaciation-driven allopatric subspeciation reinforced by missing secondary contact due to incomplete post-glacial recolonization of potential habitats.