Changes in HCFC Emissions in China During 2011–2017 (original) (raw)

Abstract

Hydrochlorofluorocarbons (HCFCs), the main substitutes of chlorofluorocarbons, are regulated by the Montreal Protocol. Chinese HCFC emissions increased fast from the beginning of this century. However, limit reports based on atmospheric measurement are available for years after 2011, an important period when significant changes are expected. Combining atmospheric observations at seven sites across China with a FLEXible PARTicle dispersion model-based Bayesian inversion technique, we estimate emission magnitudes and changes of four major HCFCs in China during 2011-2017. The emissions of all four HCFCs reached peaks before 2015. Our results agreed well with the reported bottom-up inventories. The Chinese ozone depletion potential (ODP)-weighted emission of the three most abundant HCFCs accounted for 37% of global totals from 2011 to 2016. The total emission of HCFC-22 from China, the European Union, and the United States accounted approximately a half of the global totals, suggesting large HCFC emission emitted from the rest of the world. Plain Language Summary Hydrochlorofluorocarbons (HCFCs) are used to replace chlorofluorocarbons, or well known as Freon, a group of gases which contribute to the polar ozone hole. However, HCFCs are also important ozone depletion substances and are regulated by the Montreal Protocol. As the largest developing country, the HCFC emissions in China are of great interest. In this study, we estimate emission magnitudes and changes of four major HCFCs in China over the period 2011-2017 based on atmospheric observations at seven sites. We find the emissions of all four HCFCs reached their peaks before 2015, which generally agree with the emission inventories estimated using production and consumption information, suggesting the effectiveness of the implementation of Montreal Protocol in China. However, there is a big gap between the total HCFC-22 emission from China, the European Union, and the United States and global totals, suggesting large emissions from the rest of the world.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (40)

  1. An, X. Q., Henne, S., Yao, B., Vollmer, M. K., Zhou, L. X., & Li, Y. (2012). Estimating emissions of HCFC-22 and CFC-11 in China by atmospheric observations and inverse modeling. Science China. Chemistry, 55(10), 2233-2241. https://doi.org/10.1007/s11426-012- 4624-8
  2. Blake, N. J., Blake, D. R., Simpson, I. J., Meinardi, S., Swanson, A. L., Lopez, J. P., et al. (2003). NMHCs and halocarbons in Asian conti- nental outflow during transport and chemical evolution over the Pacific (TRACE-P) field campaign: Comparison with PEM-West B. Journal of Geophysical Research, 108(D20), 8806. https://doi.org/10.1029/2002JD003367
  3. Engel, A. & Rigby, M. (Lead Authors) Burkholder, J. B., Fernandez, R. P., Froidevaux, L., Hall, B. D., et al. (2018) Update on ozone-depleting substances (ODSs) and other gases of interest to the Montreal Protocol, Chapter 1 in Scientific assessment of ozone depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58, World Meteorological Organization, Geneva, Switzerland.
  4. Fang, X., Park, S., Saito, T., Tunnicliffe, R., Ganesan, A. L., Rigby, M., et al. (2019). Rapid increase in ozone-depleting chloroform emissions from China. Nature Geoscience, 12(2), 89-93. https://doi.org/10.1038/s41561-018-0278-2
  5. Fang, X., Ravishankara, A. R., Velders, G. J. M., Molina, M. J., Su, S., Zhang, J., et al. (2018). Changes in emissions of ozone-depleting substances from China due to implementation of the Montreal Protocol. Environmental Science & Technology, 52(19), 11,359-11,366. https://doi.org/10.1021/acs.est.8b01280
  6. Fang, X., Wu, J., Su, S., Han, J., Wu, Y., Shi, Y., et al. (2012). Estimates of major anthropogenic halocarbon emissions from China based on interspecies correlations. Atmospheric Environment, 62, 26-33. https://doi.org/10.1016/j.atmosenv.2012.08.010
  7. Graziosi, F., Arduini, J., Furlani, F., Giostra, U., Kuijpers, L. J. M., Montzka, S. A., et al. (2015). European emissions of HCFC-22 based on eleven years of high frequency agospheric measurements and a Bayesian inversion method. Atmospheric Environment, 112, 196-207. https://doi.org/10.1016/j.atmosenv.2015.04.042
  8. Gridded Population of the World: Future Estimates (2005) Center for International Earth Science Information Network (CIESIN).
  9. Han, J., Li, L., Su, S., Wu, J., Fang, X., Jia, S., et al. (2014). Estimated HCFC-142b emissions in China: 2000-2050. Chinese Science Bulletin, 59(24), 3046-3053. https://doi.org/10.1007/s11434-014-0337-z
  10. Hu, L., Montzka, S. A., Lehman, S. J., Godwin, D. S., Miller, B. R., Andrews, A. E., et al. (2017). Considerable contribution of the Montreal Protocol to declining greenhouse gas emissions from the United States. Geophysical Research Letters, 44, 8075-8083. https://doi.org/ 10.1002/2017GL074388
  11. Kim, J., Li, S., Kim, K. R., Stohl, A., Mühle, J., Kim, S. K., et al. (2010). Regional atmospheric emissions determined from measurements at Jeju Island, Korea: Halogenated compounds from China. Geophysical Research Letters, 37, L12801. https://doi.org/10.1029/ 2010GL043263
  12. Li, S., Kim, J., Kim, K. R., Mühle, J., Kim, S. K., Park, M. K., et al. (2011). Emissions of halogenated compounds in East Asia determined from measurements at Jeju Island, Korea. Environmental Science & Technology, 45(13), 5668-5675. https://doi.org/10.1021/es104124k
  13. Li, Z., Bie, P., Wang, Z., Zhang, Z., Jiang, H., Xu, W., et al. (2016). Estimated HCFC-22 emissions for 1990-2050 in China and the increasing contribution to global emissions. Atmospheric Environment, 132, 77-84. https://doi.org/10.1016/j.atmosenv.2016.02.038
  14. Liu, Z., Yao, B., An, X., Zhou, L., Luan, T., Wang, H., et al. (2015). Study of Chinese HCFC-142b emission by inverse model. China Environmental Science, 35(4), 1040-1046. in Chinese with English abstract
  15. McCulloch, A., Midgley, P. M., & Ashford, P. (2003). Releases of refrigerant gases (CFC-12, HCFC-22 and HFC-134a) to the atmosphere. Atmospheric Environment, 37(7), 889-902. https://doi.org/, https://doi.org/10.1016/S1352-2310(02)00975-5
  16. McCulloch, A., Midgley, P. M., & Lindley, A. A. (2006). Recent changes in the production and global atmospheric emissions of chlorodi- fluoromethane (HCFC-22). Atmospheric Environment, 40(5), 936-942. https://doi.org/10.1016/j.atmosenv.2005.10.015
  17. Midgley, P. M., & McCulloch, A. (1999). Properties and applications of industrial halocarbons in The handbook of environmental chemistry Vol 4 Part E chap. 5. pp 130-151. In P. Fabian, & O. N. Singh (Eds.), Reactive halogen compounds in the atmosphere. Heidelberg: Springer-Verlag.
  18. Miller, B., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R., Mühle, J., & Simmonds, P. G. (2008). Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Analytical Chemistry, 80(5), 1536-1545. https://doi.org/10.1021/ac702084k
  19. Geophysical Research Letters FANG ET AL. 10,041
  20. Montzka, S. A., Hall, B. D., & Elkins, J. W. (2009). Accelerated increases observed for hydrochlorofluorocarbons since 2004 in the global atmosphere. Geophysical Research Letters, 36, L03804. https://doi.org/10.1029/2008GL036475
  21. Palmer, P. I., Jacob, D. J., Mickley, L. J., Blake, D. R., Sachse, G. W., Fuelberg, H. E., & Kiley, C. M. (2003). Eastern Asian emissions of anthropogenic halocarbons deduced from aircraft concentration data. Journal of Geophysical Research, 108(D24), 4753. https://doi.org/ 10.1029/2003JD003591
  22. Prinn, R. G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L., Fraser, P. J., et al. (2018). History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth System Science Data, 10(2), 985-1018. https://doi.org/10.3334/CDIAC/atg.db1001
  23. Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M., Alyea, F. N., et al. (2000). A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. Journal of Geophysical Research, 105(D14), 17,751-17,792. https://doi.org/ 10.1029/2000JD900141
  24. Rigby, M., Prinn, R. G., O'Doherty, S., Miller, B. R., Ivy, D., Mühle, J., et al. (2014). Recent and future trends in synthetic greenhouse gas radiative forcing. Geophysical Research Letters, 41, 2623-2630. https://doi.org/10.1002/2013GL059099
  25. Saikawa, E., Rigby, M., Prinn, R. G., Montzka, A., Miller, B. R., Kuijpers, L. J. M., et al. (2012). Global and regional emission estimates for HCFC-22. Atmospheric Chemistry and Physics, 12(21), 10,033-10,050. https://doi.org/10.5194/acp-12-10033-2012
  26. Simmonds, P. G., Rigby, M., McCulloch, A., O'Doherty, S., Young, D., Mühle, J., et al. (2017). Changing trends and emissions of hydro- chlorofluorocarbons (HCFCs) and their hydrofluorocarbon (HFCs) replacements. Atmospheric Chemistry and Physics, 17(7), 4641-4655. https://doi.org/10.5194/acp-17-4641-2017
  27. Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5(4), 4739-4799. https://doi.org/10.5194/acpd-5-4739-2005
  28. Stohl, A., Hittenberger, M., & Wotawa, G. (1998). Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmospheric Environment, 32(24), 4245-4264. https://doi.org/10.1016/S1352-2310(98)00184-8
  29. Stohl, A., Kim, J., Li, S., O'Doherty, S., Mühle, J., Salameh, P. K., et al. (2010). Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling. Atmospheric Chemistry and Physics, 10(8), 3545-3560. https://doi.org/10.5194/acp-10- 3545-2010
  30. Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., et al. (2009). An analytical inversion method for determining regional and global emissions of greenhouse gases: sensitivity studies and application to halocarbons. Atmospheric Chemistry and Physics, 9(5), 1597-1620. https://doi.org/10.5194/acp-9-1597-2009
  31. United Nations Environmental Programme. (2008) Ozonaction Special issue dedicated to HCFC Phase out: Convenient opportunity to safeguard the ozone layer and climate, available at: http://www.unep.fr/ozonaction/information/mmcfiles/3139-e- oanHCFCspecialissue.pdf, last access: February 2019.
  32. United Nations Environmental Programme. (2009) Handbook for the Montreal Protocol on substances that deplete the ozone Layer, 7 th , Nairobi, Kenya.
  33. Vollmer, M. K., Zhou, L., Greally, B. R., Henne, S., Yao, B., Reimann, S., et al. (2009). Emissions of ozone-depleting halocarbons from China. Geophysical Research Letters, 36, L15823. https://doi.org/10.1029/2009GL038659
  34. Wan, D., Xu, J., Zhang, J., Tong, X., & Hu, J. (2009). Historical and projected emissions of major halocarbons in China. Atmospheric Environment, 43(36), 5822-5829. https://doi.org/10.1016/j.atmosenv.2009.07.052
  35. Wang, C., Shao, M., Huang, D., Lu, S., Zeng, L., Hu, M., & Zhang, Q. (2014). Estimating halocarbon emissions using measured ratio relative to tracers in China. Atmospheric Environment, 89, 816-826. https://doi.org/10.1016/j.atmosenv.2014.03.025
  36. Wang, Z., Yan, H., Fang, X., Gao, L., Zhai, Z., Hu, J., et al. (2015). Past, present, and future emissions of HCFC-141b in China. Atmospheric Environment, 109, 228-233. https://doi.org/10.1016/j.atmosenv.2015.03.019
  37. Yao, B., Vollmer, M. K., Xia, L., Zhou, L., Simmonds, P. G., Stordal, F., et al. (2012). A study of four-year HCFC-22 and HCFC-142b in-situ measurements at the Shangdianzi regional background station in China. Atmospheric Environment, 63(1), 43-49. https://doi.org/ 10.1016/j.atmosenv.2012.09.011
  38. Yao, B., Vollmer, M. K., Zhou, L., Henne, S., Reimann, S., Li, P. C., et al. (2012). In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) at the Shangdianzi regional background station, China. Atmospheric Chemistry and Physics, 12(21), 10,181-10,193. https://doi.org/10.5194/acp-12-10181-2012
  39. Yokouchi, Y., Taguchi, S., Saito, T., Tohjima, Y., Tanimoto, H., & Mukai, H. (2006). High frequency measurements of HFCs at a remote site in East Asia and their implications for Chinese emissions. Geophysical Research Letters, 33, L21814. https://doi.org/10.1029/ 2006GL026403
  40. Zhang, G., Yao, B., Vollmer, M. K., Montzka, S. A., Mühle, J., Weiss, R. F., et al. (2017). Ambient mixing ratios of atmospheric halogenated compounds at five background stations in China. Atmospheric Environment, 160, 55-69. https://doi.org/10.1016/j.atmosenv.2017.04.017