Generative Feature Replay For Class-Incremental Learning (original) (raw)

ACAE-REMIND for online continual learning with compressed feature replay

Pattern Recognition Letters, 2021

Online continual learning aims to learn from a non-IID stream of data from a number of different tasks, where the learner is only allowed to consider data once. Methods are typically allowed to use a limited buffer to store some of the images in the stream. Recently, it was found that feature replay, where an intermediate layer representation of the image is stored (or generated) leads to superior results than image replay, while requiring less memory. Quantized exemplars can further reduce the memory usage. However, a drawback of these methods is that they use a fixed (or very intransigent) backbone network. This significantly limits the learning of representations that can discriminate between all tasks. To address this problem, we propose an auxiliary classifier auto-encoder (ACAE) module for feature replay at intermediate layers with high compression rates. The reduced memory footprint per image allows us to save more exemplars for replay. In our experiments, we conduct task-agnostic evaluation under online continual learning setting and get state-of-the-art performance on ImageNet-Subset, CIFAR100 and CIFAR10 dataset.

ClaRe: Practical Class Incremental Learning By Remembering Previous Class Representations

2021

This paper presents a practical and simple yet efficient method to effectively deal with the catastrophic forgetting for Class Incremental Learning (CIL) tasks. CIL tends to learn new concepts perfectly, but not at the expense of performance and accuracy for old data. Learning new knowledge in the absence of data instances from previous classes or even imbalance samples of both old and new classes makes CIL an ongoing challenging problem. These issues can be tackled by storing exemplars belonging to the previous tasks or by utilizing the rehearsal strategy. Inspired by the rehearsal strategy with the approach of using generative models, we propose ClaRe, an efficient solution for CIL by remembering the representations of learned classes in each increment. Taking this approach leads to generating instances with the same distribution of the learned classes. Hence, our model is somehow retrained from the scratch using a new training set including both new and the generated samples. Sub...

Looking Back on Learned Experiences for Class/Task Incremental Learning

2022

Classical deep neural networks are limited in their ability to learn from emerging streams of training data. When trained sequentially on new or evolving tasks, their performance degrades sharply, making them inappropriate in real-world use cases. Existing methods tackle it by either storing old data samples or only updating a parameter set of deep neural networks, which, however, demands a large memory budget or spoils the flexibility of models to learn the incremented task distribution. In this paper, we shed light on an on-call transfer set to provide past experiences whenever a new task arises in the data stream. In particular, we propose a CostFree Incremental Learning (CF-IL) not only to replay past experiences the model has learned but also to perform this in a cost free manner. Towards this end, we introduced a memory recovery paradigm in which we query the network to synthesize past exemplars whenever a new task emerges. Thus, our method needs no extra memory for data buffe...

Knowledge Capture and Replay for Continual Learning

2020

Deep neural networks have shown promise in several domains, and the learned task-specific information is implicitly stored in the network parameters. It will be vital to utilize representations from these networks for downstream tasks such as continual learning. In this paper, we introduce the notion of {\em flashcards} that are visual representations to {\em capture} the encoded knowledge of a network, as a function of random image patterns. We demonstrate the effectiveness of flashcards in capturing representations and show that they are efficient replay methods for general and task agnostic continual learning setting. Thus, while adapting to a new task, a limited number of constructed flashcards, help to prevent catastrophic forgetting of the previously learned tasks. Most interestingly, such flashcards neither require external memory storage nor need to be accumulated over multiple tasks and only need to be constructed just before learning the subsequent new task, irrespective o...

End-to-End Incremental Learning

Computer Vision – ECCV 2018, 2018

Although deep learning approaches have stood out in recent years due to their state-of-the-art results, they continue to suffer from catastrophic forgetting, a dramatic decrease in overall performance when training with new classes added incrementally. This is due to current neural network architectures requiring the entire dataset, consisting of all the samples from the old as well as the new classes, to update the model-a requirement that becomes easily unsustainable as the number of classes grows. We address this issue with our approach to learn deep neural networks incrementally, using new data and only a small exemplar set corresponding to samples from the old classes. This is based on a loss composed of a distillation measure to retain the knowledge acquired from the old classes, and a cross-entropy loss to learn the new classes. Our incremental training is achieved while keeping the entire framework end-to-end, i.e., learning the data representation and the classifier jointly, unlike recent methods with no such guarantees. We evaluate our method extensively on the CIFAR-100 and Im-ageNet (ILSVRC 2012) image classification datasets, and show state-of-the-art performance.

Practical Recommendations for Replay-based Continual Learning Methods

2022

Continual Learning requires the model to learn from a stream of dynamic, non-stationary data without forgetting previous knowledge. Several approaches have been developed in the literature to tackle the Continual Learning challenge. Among them, Replay approaches have empirically proved to be the most effective ones. Replay operates by saving some samples in memory which are then used to rehearse knowledge during training in subsequent tasks. However, an extensive comparison and deeper understanding of different replay implementation subtleties is still missing in the literature. The aim of this work is to compare and analyze existing replay-based strategies and provide practical recommendations on developing efficient, effective and generally applicable replay-based strategies. In particular, we investigate the role of the memory size value, different weighting policies and discuss about the impact of data augmentation, which allows reaching better performance with lower memory sizes.

It's all About Consistency: A Study on Memory Composition for Replay-Based Methods in Continual Learning

arXiv (Cornell University), 2022

Catastrophic forgetting, the phenomenon of forgetting previously learned tasks when learning a new one, is a major hurdle in developing continual learning algorithms. A popular method to alleviate forgetting is to use a memory buffer, which stores a subset of previously learned task examples for use during training on new tasks. The de facto method of filling memory is by randomly selecting previous examples. However, this process could introduce outliers or noisy samples that could hurt the generalization of the model. This paper introduces Memory Outlier Elimination (MOE), a method for identifying and eliminating outliers in the memory buffer by choosing samples from labelhomogeneous subpopulations. We show that a space with a high homogeneity is related to a feature space that is more representative of the class distribution. In practice, MOE removes a sample if it is surrounded by samples from different labels. We demonstrate the effectiveness of MOE on CIFAR-10, CIFAR-100, and CORe50, outperforming previous well-known memory population methods.

DRILL: Dynamic Representations for Imbalanced Lifelong Learning

Lecture Notes in Computer Science, 2021

Continual or lifelong learning has been a long-standing challenge in machine learning to date, especially in natural language processing (NLP). Although state-of-the-art language models such as BERT have ushered in a new era in this field due to their outstanding performance in multitask learning scenarios, they suffer from forgetting when being exposed to a continuous stream of non-stationary data. In this paper, we introduce DRILL, a novel lifelong learning architecture for open-domain sequence classification. DRILL leverages a biologically inspired self-organizing neural architecture to selectively gate latent language representations from BERT in a domain-incremental fashion. We demonstrate in our experiments that DRILL outperforms current methods in a realistic scenario of imbalanced classification from a data stream without prior knowledge about task or dataset boundaries. To the best of our knowledge, DRILL is the first of its kind to use a self-organizing neural architecture for open-domain lifelong learning in NLP.

REMIND Your Neural Network to Prevent Catastrophic Forgetting

Computer Vision – ECCV 2020, 2020

People learn throughout life. However, incrementally updating conventional neural networks leads to catastrophic forgetting. A common remedy is replay, which is inspired by how the brain consolidates memory. Replay involves fine-tuning a network on a mixture of new and old instances. While there is neuroscientific evidence that the brain replays compressed memories, existing methods for convolutional networks replay raw images. Here, we propose REMIND, a brain-inspired approach that enables efficient replay with compressed representations. REMIND is trained in an online manner, meaning it learns one example at a time, which is closer to how humans learn. Under the same constraints, REMIND outperforms other methods for incremental class learning on the ImageNet ILSVRC-2012 dataset. We probe REMIND's robustness to data ordering schemes known to induce catastrophic forgetting. We demonstrate REMIND's generality by pioneering online learning for Visual Question Answering (VQA) 5 .

Intelligent Replay Sampling for Lifelong Object Recognition

2020

In this work we aim to solve the image recognition task in an incremental manner. Lifelong learning is known to suffer from catastrophic forgetting. Various methods such as regulatory, architecture and replay based methods have been proposed to to solve the problem. We propose a novel, simple and efficient method for sampling data from the buffer and using it as replay data. It uses the best accuracy that can be achieve on a batch of data and the current accuracy on the same batch to judge the importance of the batch. This work was done as a part of Lifelong Object Recognition Challenge, IROS, 2019. We achieved an accuracy of 97.04% on the challenge dataset and were ranked 4.