Designing antiviral surfaces to suppress the spread of COVID-19 (original) (raw)
Related papers
A review on coronavirus survival on impermeable and porous surfaces
Sādhanā, 2021
We review recent studies on fomite transmission of COVID-19, caused by the novel coronavirus. In particular, we focus on survival time of coronavirus on solid and porous surfaces. Since the aqueous phase of a respiratory droplet serves as a medium for virus survival, evaporation of the droplet on a surface plays a crucial role in determining the virus survival time. While the bulk of the droplet takes a few seconds to evaporate, previous virus titer measurements revealed that the virus can survive for several hours or days on a surface. This long survival of virus has been attributed to a residual thin-liquid film which remains after drying of the bulk droplet. The evaporation of the thin-film is governed by the disjoining pressure within it and therefore, is a much slower process which causes the virus to survive longer. However, the aforesaid disjoining pressure is significantly modulated for the case of porous surfaces due to their typical geometries. This accelerates the thin-film evaporation on porous surfaces and thereby making them lesser susceptible to virus survival. Therefore, porous materials are deemed to be relatively safer for mitigating the spread of COVID-19 via fomite transmission. Using results of the reported research, we briefly discuss the possible recommendations to mitigate the spread of the disease.
Fight against COVID-19: The case of antiviral surfaces
APL Materials, 2021
Paper published as part of the special topic on Antiviral Materials and Coatings This paper was selected as Featured ARTICLES YOU MAY BE INTERESTED IN Designing antiviral surfaces to suppress the spread of COVID-19
Surface Engineering, 2020
The present pandemic coronavirus disease 2019 (COVID-19) becomes a serious concern of global health threat which is elicited by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This paper focuses on a hitherto untouched material's engineering issue in human scientific fight against the well-known COVID-19. We show here the challenges and possibilities in engineering the surface to fight against survivability of SARS-CoV-2 that has caused a global pandemic. It is a fact that this virus causes severe acute respiratory syndrome and hence is nicknamed as e.g. SARS-CoV-2. In this perspective; the present work provides a critical survey about the severity of indirect contact mode transmission and survivability of various coronavirus families on different material surfaces. Furthermore, the possible direction for future research needed to develop antiviral material surfaces that can be regularly used to tackle such pandemic outbreaks is identified. Finally, the missing link between the biologist's approach and the material scientist's approach in tackling such pandemics is discussed along with scopes and challenges in future interdisciplinary research.
Why coronavirus survives longer on impermeable than porous surfaces
Physics of Fluids, 2021
Previous studies reported that the drying time of a respiratory droplet on an impermeable surface along with a residual film left on it is correlated with the coronavirus survival time. Notably, earlier virus titer measurements revealed that the survival time is surprisingly less on porous surfaces such as paper and cloth than that on impermeable surfaces. Previous studies could not capture this distinct aspect of the porous media. We demonstrate how the mass loss of a respiratory droplet and the evaporation mechanism of a thin liquid film are modified for the porous media, which leads to a faster decay of the coronavirus on such media. While diffusion-limited evaporation governs the mass loss from the bulk droplet for the impermeable surface, a much faster capillary imbibition process dominates the mass loss for the porous material. After the bulk droplet vanishes, a thin liquid film remaining on the exposed solid area serves as a medium for the virus survival. However, the thin fi...
Sustainability of Coronavirus on Different Surfaces
Journal of Clinical and Experimental Hepatology, 2020
Coronavirus disease 2019 (COVID-19) is the name of the disease supposedly manifested in December 2019 from Wuhan, from the virus named SARS-CoV-2. Now, this disease has spread to almost all other parts of the world. COVID-19 pandemic has various reasons for its dramatic worldwide increase. Here, we have studied coronavirus sustainability on various surfaces. Various disinfectants and their roles are discussed from the available literature. The infection capabilities of SARS-CoV-1 and SARS-CoV-2 for different materials and finally studies on infection decay for SARS-CoV-1 and SARS-CoV-2 are discussed.
Environmental Engineering for Stopping Viruses Pandemics
Open Access Library Journal, 2020
A huge number of investigations on the ecological sources, fate, and transport of viruses have been dedicated to non-enveloped viruses such as norovirus and enteroviruses. However, more recent global outbreaks of viral diseases have been provoked by enveloped viruses comprising viruses from the Coro-navirus family (SARS, MERS, COVID-19). Enveloped viruses have a lipid membrane encircling their protein capsid and genome. SARS-CoV-2 will surely not be the ultimate fresh virus to jut and badly terrorize worldwide public health and life. Scientists and funding agencies have a trend to concentrate largely on a particular virus throughout its eruption; however, then advance on to different themes when the eruption calms. Considering the historical contributions from environmental engineering, and the huge dares that emerge, environmental science and engineering specialists have to adopt a larger, long-term, and more quantitative strategy to comprehending viruses that are diffusing through nature. Identical to the manner by which chemical contaminants are handled in the environment, the particular properties that control transport and demobilization of enveloped viruses in solutions, on surfaces, and in the air must be understood. Besides, the fashion by which ecological parameters form likely virus transmission mechanisms should be comprehended. Thereby, despite the identity of the enveloped virus that provokes the following main eruption, more sophisticated detailing of its endurance and guidance on how to reduce its diffusion may be given.
Materials, 2020
The unwavering spread of COVID-19 has taken the world by storm. Preventive measures like social distancing and mask usage have been taken all around the globe but still, as of September 2020, the number of cases continues to rise in many countries. Evidently, these measures are insufficient. Although decreases in population density and surges in the public’s usage of personal protective equipment can mitigate direct transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), indirect transmission of the virus is still probable. By summarizing the current state of knowledge on the stability of coronaviruses on dry materials, this review uncovers the high potential for SARS-CoV-2 transmission through contaminated surfaces (i.e., fomites) and prompts future research. Fully contextualized data on coronavirus persistence are presented. The methods and limitations to testing the stability of coronaviruses are explored, and the SARS-CoV-2 representativeness of different c...
F1000 - Post-publication peer review of the biomedical literature, 2020
CoV-2, has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described with incubation times between 2-10 days, facilitating its spread via droplets, contaminated hands or surfaces. We therefore reviewed the literature on all available information about the persistence of human and veterinary coronaviruses on inanimate surfaces as well as inactivation strategies with biocidal agents used for chemical disinfection, e.g. in healthcare facilities. The analysis of 22 studies reveals that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62e71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Other biocidal agents such as 0.05e0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. As no specific therapies are available for SARS-CoV-2, early containment and prevention of further spread will be crucial to stop the ongoing outbreak and to control this novel infectious thread.
Effect of Surface Porosity on SARS-CoV-2 Fomite Infectivity
ACS Omega
Previous reports indicated the low stability of severe actute respiratory syndrome coronovirus 2 (SARS-CoV-2) on various porous surfaces, but the role of porosity was unclear because there was no direct comparison between porous and nonporous solids of the same chemistry. Through comparing pairs of solids with very similar chemistry, we find that porosity is important: porous glass has a much lower infectivity than nonporous glass. However, porosity is not sufficient to lower infectivity; permeability, which is the ability of a liquid to move through a material, is the important parameter. We show this by comparing a pair of porous CuO coatings where the pores are accessible in one case and inaccessible in the other case. When the pores are inaccessible, the infectivity remains similar to that for nonporous solids. Thus, for both glass and CuO, it is the access to porosity that decreases the infectivity of extracted liquid droplets. Having established the importance of permeability, there is the open question of the mechanism of changing the infectivity of SARS-CoV-2. Several hypotheses are possible, such as increasing the difficulty of extracting the virus from the solid, changing the drying time, increasing the surface area of active ingredient, etc. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) measurements show that less viral DNA is extracted from a permeable surface, suggesting that the virus becomes trapped in the pores. Finally, we consider the effect of drying. We show that permeability and the water contact angle on the solid have effects on the drying time of a contaminated droplet, which may in turn affect infectivity.
Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents
Currently, the emergence of a novel human coronavirus, SARS-CoV-2, has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described with incubation times between 2-10 days, facilitating its spread via droplets, contaminated hands or surfaces. We therefore reviewed the literature on all available information about the persistence of human and veterinary coronaviruses on inanimate surfaces as well as inactivation strategies with biocidal agents used for chemical disinfection, e.g. in healthcare facilities. The analysis of 22 studies reveals that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62e71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Other biocidal agents such as 0.05e0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. As no specific therapies are available for SARS-CoV-2, early containment and prevention of further spread will be crucial to stop the ongoing outbreak and to control this novel infectious thread.