Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage (original) (raw)

Cellular reprogramming strategies for degenerative disorders involving the retinal pigment epithelium

2014

Cellular reprogramming is an emerging research field in which a somatic cell is reprogrammed into a different cell type by forcing the expression of lineage-specific transcription factors (TFs). Cellular identities can be manipulated using experimental techniques with the attainment of pluripotency properties and the generation of induced Pluripotent Stem (iPS) cells, or the direct conversion of one somatic cell into another somatic cell type. These pioneering discoveries offer new unprecedented opportunities for the establishment of novel cell-based therapies and disease models, as well as serving as valuable tools for the study of molecular mechanisms governing cell fate establishment and developmental processes. xix Chapter 3 : Induced Pluripotent Stem cell technology ..

Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration

Current stem cell reports, 2017

A major cause of visual disorders is dysfunction and/or loss of the light-sensitive cells of the retina, the photoreceptors. To develop better treatments for patients, we need to understand how inherited retinal disease mutations result in the dysfunction of photoreceptors. New advances in the field of stem cell and gene editing research offer novel ways to model retinal dystrophies in vitro and present opportunities to translate basic biological insights into therapies. This brief review will discuss some of the issues that should be taken into account when carrying out disease modelling and gene editing of retinal cells. We will discuss (i) the use of human induced pluripotent stem cells (iPSCs) for disease modelling and cell therapy; (ii) the importance of using isogenic iPSC lines as controls; (iii) CRISPR/Cas9 gene editing of iPSCs; and (iv) in vivo gene editing using AAV vectors. Ground-breaking advances in differentiation of iPSCs into retinal organoids and methods to derive ...

Optic Vesicle-like Structures Derived from Human Pluripotent Stem Cells Facilitate a Customized Approach to Retinal Disease Treatment

STEM CELLS, 2011

Corresponding authors: David M. Gamm, Differentiation methods for human induced pluripotent stem cells (hiPSCs) typically yield progeny from multiple tissue lineages, limiting their utility for drug testing and autologous cell transplantation. In particular, early retina and forebrain derivatives often intermingle in pluripotent stem cell cultures, owing to their shared ancestry and tightly coupled development. Here, we demonstrate that three-dimensional populations of retinal progenitor cells (RPCs) can be isolated from early forebrain populations in both human embryonic stem cell (hESC) and hiPSC cultures, providing a valuable tool for developmental, functional, and translational studies. Using our established protocol, we identified a transient population of optic vesicle-like (OV) structures that arose during a time period appropriate for normal human retinogenesis. These structures were independently cultured and analyzed to confirm their multipotent RPC status and capacity to produce physiologically responsive retinal cell types, including photoreceptors and retinal pigment epithelium (RPE). We then applied this method to hiPSCs derived from a patient with gyrate atrophy, a retinal degenerative disease affecting the RPE. RPE generated from these hiPSCs exhibited a disease-specific functional defect that could be corrected either by pharmacological means or following targeted gene repair. The production of OV-like populations from human pluripotent stem cells should facilitate the study of human retinal development and disease and advance the use of hiPSCs in personalized medicine.

Efficient Stage-Specific Differentiation of Human Pluripotent Stem Cells Toward Retinal Photoreceptor Cells

STEM CELLS, 2012

Recent successes in the stem cell field have identified some of the key chemical and biological cues which drive photoreceptor derivation from human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC); however, the efficiency of this process is variable. We have designed a three-step photoreceptor differentiation protocol combining previously published methods that direct the differentiation of hESC and hiPSC toward a retinal lineage, which we further modified with additional supplements selected on the basis of reports from the eye field and retinal development. We report that hESC and hiPSC differentiating under our regimen over a 60 day period sequentially acquire markers associated with neural, retinal field, retinal pigmented epithelium and photoreceptor cells, including mature photoreceptor markers OPN1SW and RHODOPSIN with a higher efficiency than previously reported. In addition, we report the ability of hESC and hiPSC cultures to generate neural and retinal phenotypes under minimal culture conditions, which may be linked to their ability to endogenously upregulate the expression of a range of factors important for retinal cell type specification. However, cultures that were differentiated with full supplementation under our photoreceptor-induction regimen achieve this within a significantly shorter time frame and show a substantial increase in the expression of photoreceptor-specific markers in comparison to cultures differentiated under minimal conditions. Interestingly, cultures supplemented only with B27 and/or N2 displayed comparable differentiation efficiency to those under full supplementation, indicating a key role for B27 and N2 during the differentiation process. Furthermore, our data highlight an important role for Dkk1 and Noggin in enhancing the differentiation of hESC and hiPSC toward retinal progenitor cells and photoreceptor precursors during the early stages of differentiation, while suggesting that further maturation of these cells into photoreceptors may not require additional factors and can ensue under minimal culture conditions.

Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration

Fibrogenesis & Tissue Repair, 2015

Since the discovery of induced pluripotent stem cells (iPSC) in 2006, the symptoms of many human diseases have been reversed in animal models with iPSC therapy, setting the stage for future clinical development. From the animal data it is clear that iPSC are rapidly becoming the lead cell type for cell replacement therapy and for the newly developing field of iPSC-derived body organ transplantation. The first human pathology that might be treated in the near future with iPSC is age-related macular degeneration (AMD), which has recently passed the criteria set down by regulators for phase I clinical trials with allogeneic human embryonic stem cell-derived cell transplantation in humans. Given that iPSC are currently in clinical trial in Japan (RIKEN) to treat AMD, the establishment of a set of international criteria to make clinical-grade iPSC and their differentiated progeny is the next step in order to prepare for future autologous cell therapy clinical trials. Armed with clinical-grade iPSC, we can then specifically test for their threat of cancer, for proper and efficient differentiation to the correct cell type to treat human disease and then to determine their immunogenicity. Such a rigorous approach sets a far more relevant paradigm for their intended future use than non-clinical-grade iPSC. This review focuses on the latest developments regarding the first possible use of iPSC-derived retinal pigment epithelial cells in treating human disease, covers data gathered on animal models to date and methods to make clinical-grade iPSC, suggests techniques to ensure quality control and discusses possible clinical immune responses.

Derivation, characterization and retinal differentiation of induced pluripotent stem cells

J. Biosci, 2013

Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.

Generation of a Retina Reporter hiPSC Line to Label Progenitor, Ganglion, and Photoreceptor Cell Types

2019

Early in mammalian eye development, VSX2, BRN3b, and RCVRN expression marks neural retina progenitors (NRPs), retinal ganglion cells (RGCs), and photoreceptors (PRs), respectively. The ability to create retinal organoids from human induced pluripotent stem cells (hiPSC) holds great potential for modeling both human retinal development and retinal disease. However, no methods allowing the simultaneous, real-time monitoring of multiple specific retinal cell types during development currently exist. Here, we describe a CRISPR/Cas9 gene editing strategy to generate a triple transgenic reporter hiPSC line (PGP1) that utilizes the endogenous VSX2, BRN3b, and RCVRN promoters to specifically express fluorescent proteins (Cerulean in NRPs, eGFP in RGCs and mCherry in PRs) without disrupting the function of the endogenous alleles. Retinal organoid formation from the PGP1 line demonstrated the ability of the edited cells to undergo normal retina development while exhibiting appropriate fluores...

Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA

Cell Stem Cell, 2010

Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine.