Mantle plumes and their role in Earth processes (original) (raw)
Related papers
Koppers etal Mantle plumes and their role in earth processes Nature Rev EarthEnv
2021
The existence of mantle plumes was first proposed in the 1970s to explain intra-plate, hotspot volcanism, yet owing to difficulties in resolving mantle upwellings with geophysical images and discrepancies in interpretations of geochemical and geochronological data, the origin, dynamics and composition of plumes and their links to plate tectonics are still contested. In this Review, we discuss progress in seismic imaging, mantle flow modelling, plate tectonic reconstructions and geochemical analyses that have led to a more detailed understanding of mantle plumes. Observations suggest plumes could be both thermal and chemical in nature, can attain complex and broad shapes, and that more than 18 plumes might be rooted in regions of the lowermost mantle. The case for a deep mantle origin is strengthened by the geochemistry of hotspot volcanoes that provide evidence for entrainment of deeply recycled subducted components, primordial mantle domains and, potentially, materials from Earth’s core. Deep mantle plumes often appear deflected by large-scale mantle flow, resulting in hotspot motions required to resolve past tectonic plate motions. Future research requires improvements in resolution of seismic tomography to better visualize deep mantle plume structures at smaller than 100-km scales. Concerted multi-proxy geochemical and dating efforts are also needed to better resolve spatiotemporal and chemical evolutions of long-lived mantle plumes.
Do mantle plumes preserve the heterogeneous structure of their deep-mantle source
Keywords: mantle plumes hotspot volcanism LLSVPs Hawaii mantle structure and dynamics thermochemical convection It has been proposed that the spatial variations recorded in the geochemistry of hotspot lavas, such as the bilateral asymmetry recorded at Hawaii, can be directly mapped as the heterogeneous structure and composition of their deep-mantle source. This would imply that source-region heterogeneities are transported into, and preserved within, a plume conduit, as the plume rises from the deep-mantle to Earth's surface. Previous laboratory and numerical studies, which neglect density and rheological variations between different chemical components, support this view. However, in this paper, we demonstrate that this interpretation cannot be extended to distinct chemical domains that differ from surrounding mantle in their density and viscosity. By numerically simulating thermo-chemical mantle plumes across a broad parameter space, in 2-D and 3-D, we identify two conduit structures: (i) bilaterally asymmetric conduits, which occur exclusively for cases where the chemical effect on buoyancy is negligible, in which the spatial distribution of deep-mantle heterogeneities is preserved during plume ascent; and (ii) concentric conduits, which occur for all other cases, with dense material preferentially sampled within the conduit's centre. In the latter regime, the spatial distribution of geochemical domains in the lowermost mantle is not preserved during plume ascent. Our results imply that the heterogeneous structure and composition of Earth's lowermost mantle can only be mapped from geochemical observations at Earth's surface if chemical heterogeneity is a passive component of lowermost mantle dynamics (i.e. its effect on density is outweighed by, or is secondary to, the effect of temperature). The implications of our results for: (i) why oceanic crust should be the prevalent component of ocean island basalts; and (ii) how we interpret the geochemical evolution of Earth's deep-mantle are also discussed.
The mantle isotopic printer: Basic mantle plume geochemistry for seismologists and geodynamicists
" Sunt aliquot quoque res quarum unam dicere causam / non satis est, verum pluris, unde una tamen sit " (There are phenomena for which it is not suffi cient to infer a single origin, but it is necessary to propose several, among which, however, only one is true). —Lucretius, De Rerum Natura (VI.703–704) ABSTRACT High-temperature geochemistry combined with igneous petrology is an essential tool to infer the conditions of magma generation and evolution in the Earth's interior. During the past thirty years, a large number of geochemical models of the Earth, essentially inferred from the isotopic composition of basaltic rocks, have been proposed. These geochemical models have paid little attention to basic physics concepts, broadband seismology, or geological evidence, with the effect of producing results that are constrained more by assumptions than by data or fi rst principles. This may not be evident to seismologists and geodynamicists. A common view in igneous petrology, seismology, and mantle modeling is that isotope geochemistry (e.g., the Rb-Sr, Sm-Nd, U-Th-Pb, U-Th-He, Re-Os, Lu-Hf, and other less commonly used systems) has the power to identify physical regions in the mantle, their depths, their rheological behavior, and the thermal conditions of magma generation. We demonstrate the fallacy of this approach and the model-dependent conclusions that emerge from unconstrained or poorly constrained geochemical models that do not consider physics, seismology (other than teleseismic travel-time tomog-raphy and particularly compelling colored mantle cross sections), and geology.