Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers (original) (raw)

Detection of tumor-derived extracellular vesicles in plasma from patients with solid cancer

BMC Cancer, 2021

Background Extracellular vesicles (EVs) are actively secreted by cells into body fluids and contain nucleic acids of the cells they originate from. The goal of this study was to detect circulating tumor-derived EVs (ctEVs) by mutant mRNA transcripts (EV-RNA) in plasma of patients with solid cancers and compare the occurrence of ctEVs with circulating tumor DNA (ctDNA) in cell-free DNA (cfDNA). Methods For this purpose, blood from 20 patients and 15 healthy blood donors (HBDs) was collected in different preservation tubes (EDTA, BCT, CellSave) and processed into plasma within 24 h from venipuncture. EVs were isolated with the ExoEasy protocol from this plasma and from conditioned medium of 6 cancer cell lines and characterized according to MISEV2018-guidelines. RNA from EVs was isolated with the ExoRNeasy protocol and evaluated for transcript expression levels of 96 genes by RT-qPCR and genotyped by digital PCR. Results Our workflow applied on cell lines revealed a high concordance b...

Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology

BMC clinical pathology, 2015

Both normal and diseased cells continuously shed extracellular vesicles (EVs) into extracellular space, and the EVs carry molecular signatures and effectors of both health and disease. EVs reflect dynamic changes that are occurring in cells and tissue microenvironment in health and at a different stage of a disease. EVs are capable of altering the function of the recipient cells. Trafficking and reciprocal exchange of molecular information by EVs among different organs and cell types have been shown to contribute to horizontal cellular transformation, cellular reprogramming, functional alterations, and metastasis. EV contents may include tumor suppressors, phosphoproteins, proteases, growth factors, bioactive lipids, mutant oncoproteins, oncogenic transcripts, microRNAs, and DNA sequences. Therefore, the EVs present in biofluids offer unprecedented, remote, and non-invasive access to crucial molecular information about the health status of cells, including their driver mutations, cl...

Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples

Journal of Extracellular Vesicles, 2016

Extracellular vesicles (EV) are membranous particles (30Á1,000 nm in diameter) secreted by cells. Important biological functions have been attributed to 2 subsets of EV, the exosomes (bud from endosomal membranes) and the microvesicles (MV; bud from plasma membranes). Since both types of particles contain surface proteins derived from their cell of origin, their detection in blood may enable diagnosis and prognosis of disease. We have used an antibody microarray (DotScan) to compare the surface protein profiles of live cancer cells with those of their EV, based on their binding patterns to immobilized antibodies. Initially, EV derived from the cancer cell lines, LIM1215 (colorectal cancer) and MEC1 (B-cell chronic lymphocytic leukaemia; CLL), were used for assay optimization. Biotinylated antibodies specific for EpCAM (CD326) and CD19, respectively, were used to detect captured particles by enhanced chemiluminescence. Subsequently, this approach was used to profile CD19 ' EV from the plasma of CLL patients. These EV expressed a subset (Â40%) of the proteins detected on CLL cells from the same patients: moderate or high levels of CD5, CD19, CD31, CD44, CD55, CD62L, CD82, HLA-A,B,C, HLA-DR; low levels of CD21, CD49c, CD63. None of these proteins was detected on EV from the plasma of age-and gender-matched healthy individuals.

Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases

Veterinary Pathology, 2021

With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as wel...

Extracellular Vesicles Carry Distinct Proteo-Transcriptomic Signatures That are Different from Their Cancer Cell of Origin

2021

Circulating extracellular vesicles (EVs) contain molecular footprints from their cell of origin and may provide potential non-invasive access for detection, characterization, and monitoring of numerous diseases. Despite their growing promise, the integrated proteo-transcriptomic landscape of EVs and their donor cells remain poorly understood. To assess their cargo, we conducted small RNA sequencing and mass spectrometry (LC-MS/MS) of EVs isolated from in vitro cancer cell culture and prostate cancer patients’ serum. Here, we report that EVs enrich for distinct molecular cargo, and their proteo-transcriptome is predominantly different from their cancer cell of origin, implicating a coordinated disposal and delivery mechanism. We have discovered that EVs package their cargo in a non-random fusion, as their most enriched RNAs and proteins are not the most abundant cargo from their donor cells. We show that EVs enrich for 4 times more cytoskeletal and 2 times extracellular proteins than...

Extracellular Vesicles – Biomarkers and Effectors of the Cellular Interactome in Cancer

Frontiers in Pharmacology, 2013

In multicellular organisms both health and disease are defined by patterns of communication between the constituent cells. In addition to networks of soluble mediators, cells are also programed to exchange complex messages pre-assembled as multimolecular cargo of membraneous structures known extracellular vesicles (EV). Several biogenetic pathways produce EVs with different properties, and known as exosomes, ectosomes, and apoptotic bodies. In cancer, EVs carry molecular signatures and effectors of the disease, such as mutant oncoproteins, oncogenic transcripts, microRNA, and DNA sequences. Intercellular trafficking of such EVs (oncosomes) may contribute to horizontal cellular transformation, phenotypic reprograming, and functional re-education of recipient cells, both locally and systemically. The EV-mediated, reciprocal molecular exchange also includes tumor suppressors, phosphoproteins, proteases, growth factors, and bioactive lipids, all of which participate in the functional integration of multiple cells and their collective involvement in tumor angiogenesis, inflammation, immunity, coagulopathy, mobilization of bone marrowderived effectors, metastasis, drug resistance, or cellular stemness. In cases where the EV role is rate limiting their production and uptake may represent and unexplored anticancer therapy target. Moreover, oncosomes circulating in biofluids of cancer patients offer an unprecedented, remote, and non-invasive access to crucial molecular information about cancer cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets, and biomarkers of drug resistance. New nanotechnologies are being developed to exploit this unique biomarker platform. Indeed, embracing the notion that human cancers are defined not only by processes occurring within cancer cells, but also between them, and amidst the altered tumor and systemic microenvironment may open new diagnostic and therapeutic opportunities.

Utilising extracellular vesicles for early cancer diagnostics: benefits, challenges and recommendations for the future

British Journal of Cancer, 2022

To increase cancer patient survival and wellbeing, diagnostic assays need to be able to detect cases earlier, be applied more frequently, and preferably before symptoms develop. The expansion of blood biopsy technologies such as detection of circulating tumour cells and cell free DNA has shown clinical promise for this. Extracellular vesicles released into the blood from tumour cells may offer a snapshot of the whole of the tumour. They represent a stable and multifaceted complex of a number of different types of molecules including DNA, RNA and protein. These represent biomarker targets that can be collected and analysed from blood samples, offering great potential for early diagnosis. In this review we discuss the benefits and challenges of the use of extracellular vesicles in this context and provide recommendations on where this developing field should focus their efforts to bring future success.

Proteomic Approach for Searching for Universal, Tissue-Specific, and Line-Specific Markers of Extracellular Vesicles in Lung and Colorectal Adenocarcinoma Cell Lines

International Journal of Molecular Sciences, 2020

Tumor-derived extracellular vesicles (EVs), including exosomes, contain proteins that mirror the molecular landscape of producer cells. Being potentially detectible in biological fluids, EVs are of great interest for the screening of cancer biomarkers. To reveal universal, tissue-specific, and line-specific markers, we performed label-free mass spectrometric profiling of EVs originating from the human colon cancer cell lines Caco-2, HT29, and HCT-116, as well as from the lung cancer cell lines NCI-H23 and A549. A total of 651 proteins was identified in the EV samples using at least two peptides. These proteins were highly enriched in exosome markers. We found 11 universal, eight tissue-specific, and 29 line-specific markers, the levels of which were increased in EVs compared to the whole lysates. The EV proteins were involved in the EGFR, Rap1, integrin, and microRNA signaling associated with metastasis and cancer progression. An EV protein-based assay could be developed as a liquid...

What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer

Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2018

Circulating biomarkers have a great potential in diagnosing cancer diseases at early stages, where curative treatment is a realistic possibility. In the recent years, using extracellular vesicles (EVs) derived from blood as biomarkers has gained widespread popularity, mainly because they are thought to be easy to isolate and carry a vast variety of biological cargos that can be analyzed for biomarker purposes. However, our current knowledge on the plasma EV concentration in normophysiological states is sparse. Here, we provide the very first mean estimate of the plasma EV concentration based on values obtained from a thorough literature review. The different estimates obtained from the literature are correlated to the isolation techniques used to obtain them, illustrating how some methodologies may over-or underestimate the plasma EV concentration. We also show that the estimated plasma EV concentration (approximately 10 10 EVs per mL) defines EVs as a minority population compared to other colloidal particles of the systemic circulation, namely the lipoproteins, which are known contaminants in EV isolates and carry biomarker molecules themselves. Lastly, we introduce the possibility of regarding EVs and lipoproteins as a continuum of lipid-containing particles to which biomarker molecules can be associated. Using such a holistic approach, increased strength of plasma-derived cancer biomarkers may soon be revealed.