Efficient Nitrogen Doping of Single-Layer Graphene Accompanied by Negligible Defect Generation for Integration into Hybrid Semiconductor Heterostructures (original) (raw)
Related papers
GaN‐Based Nanorods/Graphene Heterostructures for Optoelectronic Applications
physica status solidi (b), 2019
The insulating character of sapphire, meltback etching of Si, bulk and surface defects prevented the efficient integration of GaN nanostructures in optoelectronic devices. Here, it is demonstrated that graphene can simultaneously serve as an electrical bottom contact, a chemically inert buffer layer, and a superior lattice and thermal matched growth substrate. Vertically aligned, high crystal quality GaN nanorods (NRs) without bulk defects such as threading dislocations and with only a mild strain at the NRs’ base are grown by metal‐organic vapor‐phase epitaxy on defect‐free graphene using nanometer‐sized AlxGa1−xN nucleation islands. Here no influence of the supporting substrate on the GaN epitaxy is observed. However, at defects in graphene the effects of dangling bonds and the underlying substrate, presumably through nanoholes in graphene, on the properties of GaN NRs are visible. It is also shown that surface defects in InxGa1−xN/GaN NRs from planar films produced by etching of ...
Scientific reports, 2015
The superior photoconductive behavior of a simple, cost-effective n-GaN nanorod (NR)-graphene hybrid device structure is demonstrated for the first time. The proposed hybrid structure was synthesized on a Si (111) substrate using the high-quality graphene transfer method and the relatively low-temperature metal-organic chemical vapor deposition (MOCVD) process with a high V/III ratio to protect the graphene layer from thermal damage during the growth of n-GaN nanorods. Defect-free n-GaN NRs were grown on a highly ordered graphene monolayer on Si without forming any metal-catalyst or droplet seeds. The prominent existence of the undamaged monolayer graphene even after the growth of highly dense n-GaN NRs, as determined using Raman spectroscopy and high-resolution transmission electron microscopy (HR-TEM), facilitated the excellent transport of the generated charge carriers through the photoconductive channel. The highly matched n-GaN NR-graphene hybrid structure exhibited enhancement...
Controlling Nitrogen Doping in Graphene with Atomic Precision: Synthesis and Characterization
Nanomaterials
Graphene provides a unique platform for the detailed study of its dopants at the atomic level. Previously, doped materials including Si, and 0D-1D carbon nanomaterials presented difficulties in the characterization of their dopants due to gradients in their dopant concentration and agglomeration of the material itself. Graphene’s two-dimensional nature allows for the detailed characterization of these dopants via spectroscopic and atomic resolution imaging techniques. Nitrogen doping of graphene has been well studied, providing insights into the dopant bonding structure, dopant-dopant interaction, and spatial segregation within a single crystal. Different configurations of nitrogen within the carbon lattice have different electronic and chemical properties, and by controlling these dopants it is possible to either n- or p-type dope graphene, grant half-metallicity, and alter nitrogen doped graphene’s (NG) catalytic and sensing properties. Thus, an understanding and the ability to co...
Applied Sciences
Single-layer (SLG)/few-layer (FLG) and multilayer graphene (MLG) (>15 layers) samples were obtained using the CVD method on high-textured Cu foil catalysts. In turn, plasma-assisted molecular beam epitaxy was applied to carry out the GaN graphene-assisted growth. A thin AlN layer was used at the initial stage to promote the nucleation process. The effect of graphene defectiveness and thickness on the quality of the GaN epilayers was studied. The bilayer graphene showed the lowest strain and provided optimal conditions for the growth of GaN/AlN. Theoretical studies based on the density functional theory have shown that the energy of interaction between graphene and AlN is almost the same as between graphite sheets (194 mJ/m2). However, the presence of vacancies and other defects as well as compression-induced ripples and nitrogen doping leads to a significant change in this energy.
Beilstein Journal of Nanotechnology, 2021
We present detailed Raman studies of graphene deposited on gallium nitride nanowires with different variations in height. Our results indicate that different density and height of nanowires impact graphene properties such as roughness, strain, and carrier concentration as well as density and type of induced defects. Tracing the manifestation of those interactions is important for the application of novel heterostructures. A detailed analysis of Raman spectra of graphene deposited on different nanowire substrates shows that bigger differences in nanowires height increase graphene strain, while a higher number of nanowires in contact with graphene locally reduces the strain. Moreover, the value of graphene carrier concentration is found to be correlated with the density of nanowires in contact with graphene. The lowest concentration of defects is observed for graphene deposited on nanowires with the lowest density. The contact between graphene and densely arranged nanowires leads to a...