The Administration Matrix Modifies the Beneficial Properties of a Probiotic Mix of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5 (original) (raw)

2020, Probiotics and Antimicrobial Proteins

Consumption of dairy products is one of the most natural ways to introduce probiotics. However, the beneficial effects of the probiotics might depend on the administration form. The aim of this study was to investigate the beneficial properties of two probiotic strains: Bifidobacterium animalis subsp. lactis (BB-12) and Lactobacillus acidophilus (LA-5) in different administration forms (capsules and yogurt). First, in vitro resistance to gastrointestinal condition, surface properties, and immunomodulation capacities were determined. Then, the anti-inflammatory properties of the probiotic strains administrated on yogurt or capsules were tested in a dinitrobenzene sulfonic acid (DNBS)-induced colitis mouse model. The survival rates of BB-12 and LA-5 strains to gastrointestinal conditions were slightly higher when yogurt was used as carrier. They showed most affinity to hexane (no-polar basic solvent) than ethyl-acetate (polar basic solvent). BB-12 showed the higher binding capacity to HT-29, Caco-2, and mucin. Both probiotic candidates suppress the secretion of IL-8 secretion by HT-29-TNF-α stimulated cells. Finally, administration of BB-12 and LA-5 strains improve colitis in mice. They protect against weight loss, inflammation, and hyperpermeability induced by DNBS. However, these anti-inflammatory effects were limited when mice were treated with the probiotic strain on a yogurt matrix. Overall results indicate that BB-12 and LA-5 positive properties are compromised depending on the matrix. Consequently, the selection of an appropriate matrix is an important criterion to conserve the positive benefits of these probiotic strains.