Development of the QuEChERS Extraction Method for the Determination of Polychlorinated Biphenyls (Aroclor 1254) in Soil Samples by Using GC-MS (original) (raw)
Related papers
2016
Polychlorinated biphenyls (PCBs) belong to a broad family of synthetic organic chemicals known as chlorinated hydrocarbons. In the United States, PCBs were produced from 1929 until their manufacture was banned in 1979. These compounds have a range of toxicity and vary in consistency. Techniques such as Soxhlet (U.S. EPA Method 3540), sonication (U.S. EPA Method 3550), and microwave extraction (U.S. EPA Method 3546) are presently used for the extraction of PCBs from soil prior to their analytical Solvents and Standards: The internal standard solution was prepared by adding 0.1 mL of decachlorobiphenyl to one liter of hexane. Surrogate solution was prepared by adding 50 μL of tetrachloro m-xilene to one liter of hexane. Both solutions had a final concentration of 0.10 mg/L. PCB standard solutions with concentrations of 0.20, 0.10, 0.05, 0.01, 0.005, and 0.001 mg/L were prepared by diluting the stock solution. The internal standard solution was added to each and the standards were brou...
Applied spectroscopy, 2016
An expedited field analysis method was developed for the determination of polychlorinated biphenyls (PCBs) in soil matrices using a portable gas chromatography-mass spectrometry (GC-MS) instrument. Soil samples of approximately 0.5 g were measured with a portable scale and PCBs were extracted by headspace solid-phase microextraction (SPME) with a 100 µm polydimethylsiloxane (PDMS) fiber. Two milliliters of 0.2 M potassium permanganate and 0.5 mL of 6 M sulfuric acid solution were added to the soil matrices to facilitate the extraction of PCBs. The extraction was performed for 30 min at 100 ℃ in a portable heating block that was powered by a portable generator. The portable GC-MS instrument took less than 6 min per analysis and ran off an internal battery and helium cylinder. Six commercial PCB mixtures, Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260, could be classified based on the GC chromatograms and mass spectra. The detection limit of this method for Aroclor 1260 in soil ...
GREEN CHEMISTRY LETTERS AND REVIEWS, 2018
A procedure focused on microwave-assisted extraction in open vessel (MAE-OV) and gas chromatography with electron capture detection (GC-ECD) was used for the determination of 26 congeners of polychlorinated biphenyls (PCBs) in soil samples. The limit of detection (LOD) and limit of quantification (LOQ) were evaluated for commercial PCBs mixture Aroclor1260. LOD and LOQ were calculated for each PCB congener, in the ranges (0.03–0.27 ng g−1) and (0.11–0.70 ng g−1), respectively. After optimization, 26 PCBs congeners were successfully extracted from soil samples with recovery amounts ranging between 84.7% and 117.3% for all PCBs congeners. The evaluated method of MAE-OV showed good separation and extraction of all PCBs congeners from soil samples. Extraction parameters such as solvent choice, power and extraction time were investigated. This study indicated that MAE-OV could be an interesting alternative method to extract PCBs from soils, since it is economical, easy, fast and requires low amounts of solvents.
Journal of Separation Science, 2014
A novel fast screening method was developed for the determination of polychlorinated biphenyls that are constituents of the commercial mixture, Aroclor 1260, in soil matrices by gas chromatography with mass spectrometry combined with solid-phase microextraction. Nonequilibrium headspace solid-phase microextraction with a 100 m polydimethylsiloxane fiber was used to extract polychlorinated biphenyls from 0.5 g of soil matrix. The use of 2 mL of saturated potassium dichromate in 6 M sulfuric acid solution improved the reproducibility of the extractions and the mass transfer of the polychlorinated biphenyls from the soil matrix to the microextraction fiber via the headspace. The extraction time was 30 min at 100ЊC. The percent recoveries, which were evaluated using an Aroclor 1260 standard and liquid injection, were within the range of 54.9-65.7%. Two-way extracted ion chromatogram data were used to construct calibration curves. The relative error was <±15% and the relative standard deviation was <15%, which are respective measures of the accuracy and precision. The method was validated with certified soil samples and the predicted concentrations for Aroclor 1260 agreed with the certified values. The method was demonstrated to be linear from 10 to 1000 ng/g for Aroclor 1260 in dry soil.
Journal of Chromatography A, 2012
(AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process-such as editing, corrections, structural formatting, and other quality control mechanisms-may not be reflected in this version of the text. The definitive version of the text was subsequently published in [insert name of publication, volume number, issue number, date, and digital object identifier link]. You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license. (2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
Analytica Chimica Acta, 2006
Miniaturised ultrasonic solvent extraction procedure was developed for the determination of selected polychlorinated biphenyls (PCBs) in soil samples by gas chromatography-mass-selective detection by using 2 3 factorial experimental design. Recoveries of PCBs from fortified soil samples are over 90% for three different fortification levels between 40 and 120 g kg −1 , and relative standard deviations of the recoveries are below 7%. The limits of detection (LODs) ranged from 0.003 to 0.006 g kg −1 . The performance of the proposed method was compared to traditional shake flask extraction method on the spiked real soil sample and extraction methods showed comparable efficiencies. Proposed miniaturised ultrasonic solvent extraction offers several advantages, i.e., reducing sample requirement for measurement of target compound, less solvent consumption and reducing the costs associated with solvent purchase and waste disposal.
Journal of Chromatography A, 2005
This paper compares the extraction effectiveness of six different commonly applied extraction techniques for the determination of PCBs in soil. The techniques included are Soxhlet, Soxtec, ultrasonication extraction, supercritical fluid extraction, microwave-assisted extraction and accelerated solvent extraction. For none of the techniques were the extraction conditions optimized, but instead the extraction parameters were based on the experience from previous successful investigation published by a number of research groups worldwide. In general, all extraction techniques were capable of producing accurate data for one native PCB contaminated soil diluted with another soil sample to obtain two concentration levels. It could therefore be concluded that any of the investigated techniques can be used with success if the extraction conditions applied are chosen wisely.
Analytical and Bioanalytical Chemistry, 2009
A simple and rapid method based on pressurized liquid extraction has been validated for the simultaneous extraction of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from agricultural soil samples. Effective extraction was carried out in less than 17 min for all the studied compounds, and good recoveries were obtained for PAHs and PCBs, ranging from 70% to 112%, when blank samples were spiked at 2.5 μg kg −1 , except for naphthalene with recoveries close to 40%. The separation and determination were performed by gas chromatography coupled to tandem mass spectrometry using a triple quadrupole mass analyzer. The target compounds were detected by electron impact with selected reaction monitoring, and mass spectrometric conditions were optimized in order to increase selectivity and sensitivity. The developed method was validated, and matrix-matched calibration was used for quantification purposes. Repeatability and interday precision ranged from 0.9% to 16.8% and from 1.6% to 22.3%, respectively. Limits of quantification ranged from 0.07 to 2.50 μg kg −1. The proposed method was applied to the analysis of agricultural soil samples collected from Almeria (Spain), and PAHs and PCBs were detected in some samples at concentrations ranging from 0.1 to 210 μg kg −1 .
Modern approaches in separation, identification and quantification of polychlorinated biphenyls
Current Opinion in Environmental Science & Health, 2020
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.