Author response: Evolutionary consequences of intra-patient phage predation on microbial populations (original) (raw)
Related papers
Evolutionary consequences of intra-patient phage predation on microbial populations
eLife, 2014
The impact of phage predation on bacterial pathogens in the context of human disease is not currently appreciated. Here, we show that predatory interactions of a phage with an important environmentally transmitted pathogen, Vibrio cholerae, can modulate the evolutionary trajectory of this pathogen during the natural course of infection within individual patients. We analyzed geographically and temporally disparate cholera patient stool samples from Haiti and Bangladesh and found that phage predation can drive the genomic diversity of intra-patient V. cholerae populations. Intra-patient phage-sensitive and phage-resistant isolates were isogenic except for mutations conferring phage resistance, and moreover, phage-resistant V. cholerae populations were composed of a heterogeneous mix of many unique mutants. We also observed that phage predation can significantly alter the virulence potential of V. cholerae shed from cholera patients. We provide the first molecular evidence for predato...
Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants
2008
Seasonal epidemics of cholera in Bangladesh are self-limited in nature, presumably due to phage predation of the causative Vibrio cholerae during the late stage of an epidemic, when cholera patients excrete large quantities of phage in their stools. To further understand the mechanisms involved, we studied the effect of phage on the infectivity and survival of V. cholerae shed in stools. The 50% infectious dose of stool vibrios in infant mice was ϳ10-fold higher when the stools contained a phage (1.8 ؋ 10 3 to 5.7 ؋ 10 6 PFU/ml) than when stools did not contain a detectable phage. In competition assays in mice using a reference strain and phage-negative cholera stools, the infectivity of biofilm-like clumped cells was 3.9-to 115.9-fold higher than that of the corresponding planktonic cells. However, the difference in infectivity of these two cell populations in phage-positive stools was significantly less than that in phage-negative stools (P ؍ 0.0006). Coculture of a phage and V. cholerae or dilutions of phage-positive cholera stools in nutrient medium, but not in environmental water, caused rapid emergence of phage-resistant derivatives of the bacteria, and these derivatives lost their O1 antigen. In cholera stools and in intestinal contents of mice prechallenged with a mixture of V. cholerae and phage, the bacteria remained completely phage susceptible, suggesting that the intestinal environment did not favor the emergence of phage-resistant derivatives that lost the O1 antigen. Our results indicate that phages lead to the collapse of epidemics by modulating the required infectious dose of the bacteria. Furthermore, the dominance of phage-resistant variants due to the bactericidal selective mechanism occurs rarely in natural settings, and the emerging variants are thus unable to sustain the ongoing epidemic.
mBio, 2014
Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. IMPORTANCE Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission.
Evolutionary Dynamics of Vibrio cholerae O1 following a Single-Source Introduction to Haiti
mBio, 2013
Prior to the epidemic that emerged in Haiti in October of 2010, cholera had not been documented in this country. After its introduction, a strain of Vibrio cholerae O1 spread rapidly throughout Haiti, where it caused over 600,000 cases of disease and >7,500 deaths in the first two years of the epidemic. We applied whole-genome sequencing to a temporal series of V. cholerae isolates from Haiti to gain insight into the mode and tempo of evolution in this isolated population of V. cholerae O1. Phylogenetic and Bayesian analyses supported the hypothesis that all isolates in the sample set diverged from a common ancestor within a time frame that is consistent with epidemiological observations. A pangenome analysis showed nearly homogeneous genomic content, with no evidence of gene acquisition among Haiti isolates. Nine nearly closed genomes assembled from continuous-long-read data showed evidence of genome rearrangements and supported the observation of no gene acquisition among isolates. Thus, intrinsic mutational processes can account for virtually all of the observed genetic polymorphism, with no demonstrable contribution from horizontal gene transfer (HGT). Consistent with this, the 12 Haiti isolates tested by laboratory HGT assays were severely impaired for transformation, although unlike previously characterized noncompetent V. cholerae isolates, each expressed hapR and possessed a functional quorum-sensing system. Continued monitoring of V. cholerae in Haiti will illuminate the processes influencing the origin and fate of genome variants, which will facilitate interpretation of genetic variation in future epidemics. IMPORTANCE Vibrio cholerae is the cause of substantial morbidity and mortality worldwide, with over three million cases of disease each year. An understanding of the mode and rate of evolutionary change is critical for proper interpretation of genome sequence data and attribution of outbreak sources. The Haiti epidemic provides an unprecedented opportunity to study an isolated, single-source outbreak of Vibrio cholerae O1 over an established time frame. By using multiple approaches to assay genetic variation, we found no evidence that the Haiti strain has acquired any genes by horizontal gene transfer, an observation that led us to discover that it is also poorly transformable. We have found no evidence that environmental strains have played a role in the evolution of the outbreak strain.
mBio, 2020
The switching of serotype from Ogawa to Inaba and back to Ogawa has been observed temporally in Vibrio cholerae O1, which is responsible for endemic cholera in Bangladesh. The serospecificity is key for effective intervention and for preventing cholera, a deadly disease that continues to cause significant morbidity and mortality worldwide. In the present study, WGS of V. cholerae allowed us to better understand the factors associated with the serotype switching events observed during 2015 to 2018. Genomic data analysis of strains isolated during this interval highlighted variations in the genes ctxB , tcpA , and rtxA and also identified significant differences in the genetic content of the mobilome, which included key elements such as SXT ICE, VSP-II, and PLE. Our results indicate that selective forces such as antibiotic resistance and phage resistance might contribute to the clonal expansion and predominance of a particular V. cholerae serotype responsible for an outbreak.
Vibrio cholerae genomic diversity within and between patients
Cholera is a severe, waterborne diarrheal disease caused by toxin-producing strains of the bacterium Vibrio cholerae. Comparative genomics has revealed "waves" of cholera transmission and evolution, in which clones are successively replaced over decades and centuries. However, the extent of V. cholerae genetic diversity within an epidemic or even within an individual patient is poorly understood. Here, we characterized V. cholerae genomic diversity at a micro-epidemiological level within and between individual patients from Bangladesh and Haiti. To capture within-patient diversity, we isolated multiple (8 to 20) V. cholerae colonies from each of eight patients, sequenced their genomes and identified point mutations and gene gain/loss events. We found limited but detectable diversity at the level of point mutations within hosts (zero to three single nucleotide variants within each patient), and comparatively higher gene content variation within hosts (at least one gain/loss...
Vibrio cholerae embraces two major evolutionary traits as revealed by targeted gene sequencing
Scientific Reports
Vibrio cholerae inhabits aquatic environments worldwide and has over 200 recognized serogroups classified by O-polysaccharide specificity. Here, we report that V. cholerae selects either of two genetic traits during their evolution. Sequencing of the specific gene locus MS6_A0927 revealed that 339 of 341 strains of V. cholerae and closely related Vibrio species originating from 34 countries over a century carried either metY (M) (~1,269 bp) or luxR-hchA (LH) (~1,600 bp) genes, and consequently those vibrios were separated into two clusters, M (45.4%) and LH (54.6%). Only two strains contained both M and LH in the same locus. Moreover, extensive polymorphisms in those genes were detected in M and LH with 79 and 46 sequence variations, respectively. V. cholerae O1 strains isolated from cholera outbreaks worldwide, and some non-O1 strains evolving from O1 via exchange of genes encoding cell surface polysaccharides possessed LH alleles. Analysis of polymorphisms in the gene locus implicated a high degree of genetic diversity and identical subpopulations among the V. cholerae species. Vibrio cholerae is a gram-negative bacterial pathogen responsible for cholera, and several million cholera cases including 21,000-143,000 deaths occur worldwide each year 1. Serological grouping of V. cholerae has identified up to 206 O-serogroups 2. Epidemic/pandemic cholera is typically ascribed to serogroup O1; however, in 1992, a novel serogroup O139 V. cholerae caused outbreaks in Asian countries 3. V. cholerae carries several virulence-related genes to provoke pathogenic processes in the infected hosts. The key virulence factors of serogroups O1 and O139 include cholera toxin (CT), which is responsible for profuse watery diarrhea, and a pilus colonization factor known as toxin-coregulated pilus (TCP). Although most non-O1/non-O139 or environmental isolates of V. cholerae do not produce CT and lack the cholera toxin genes, some strains possess heat-stable enterotoxin (Stn) 4 , hemolysin (HlyA) 5,6 , repeat in toxin (RTX) 7 , Cholix toxin (ChxA) 8,9 , hemagglutinin protease (HAP) 10 , type 6 secretion system (T6SS) 11 , or type III secretion system (TTSS) 12. However, the pathogenic mechanisms of these isolates remain to be elucidated. High throughput sequencing facilitates the rapid and accurate identification of virulence factors of pathogenic bacteria, and can be used to identify the pathways of infectious disease transmission 13-15. Although genomic technologies are rapidly evolving, their widespread implementation in clinical microbiology laboratories and for monitoring public health is limited owing to the need for effective semi-automated pipelines, standardized quality control and data interpretation, bioinformatics expertise, and infrastructure 16. Relatedness and differences among V. cholerae isolates have been investigated by several molecular fingerprinting methods for a prolonged duration 17. Pulsed field gel electrophoresis (PFGE) has been used frequently for typing of the O1 and O139 serogroups of V. cholerae 18,19. Although PFGE is highly reproducible and its discriminatory power is sufficiently high, it is laborious, and is limited with regard to intra-and inter-laboratory comparison compared to sequence-based methods 17,20. Multilocus sequence typing (MLST) overcomes the poor portability of traditional and older molecular typing approaches 20. It is a technique whereby several internal control genes (loci) are sequenced, and