Usability Assessment of Body Controlled Electric Hand Prostheses: A Pilot Study (original) (raw)
Related papers
The SoftHand Pro: Functional evaluation of a novel, flexible, and robust myoelectric prosthesis
PloS one, 2018
Roughly one quarter of active upper limb prosthetic technology is rejected by the user, and user surveys have identified key areas requiring improvement: function, comfort, cost, durability, and appearance. Here we present the first systematic, clinical assessment of a novel prosthetic hand, the SoftHand Pro (SHP), in participants with transradial amputation and age-matched, limb-intact participants. The SHP is a robust and functional prosthetic hand that minimizes cost and weight using an underactuated design with a single motor. Participants with limb loss were evaluated on functional clinical measures before and after a 6-8 hour training period with the SHP as well as with their own prosthesis; limb-intact participants were tested only before and after SHP training. Participants with limb loss also evaluated their own prosthesis and the SHP (following training) using subjective questionnaires. Both objective and subjective results were positive and illuminated the strengths and w...
The SoftHand Pro platform: a flexible prosthesis with a user-centered approach
Journal of Neuroengineering and Rehabilitation, 2023
Background Among commercially-available upper-limb prostheses, the two most often used solutions are simple hook-style grippers and poly-articulated hands, which present a higher number of articulations and show a closer resemblance to biological limbs. In their majority, the former type of prostheses is body-powered, while the second type is controlled by myoelectric signals. Body-powered grippers are easy to control and allow a simple form of force feedback, frequently appreciated by users. However, they present limited versatility. Poly-articulated hands afford a wide range of grasp and manipulation types, but require enough residual muscle activation for dexterous control. Several factors, e.g. level of limb loss, personal preferences, cost, current occupation, and hobbies can influence the preference for one option over the other, and is always a result of the trade-off between system performance and users' needs. Methods The SoftHand Pro (SHP) is an artificial hand platform that has 19 independent joints (degrees-of-freedom), but is controlled by a single input. The design of this prosthesis is inspired by the concept of postural synergies in motor control and implemented with soft-robotic technologies. Their combination provides increased robustness, safe interaction and the execution of diverse grasps. The potential of the SHP is fully unleashed when users learn how to exploit its features and create an intimate relationship between the technical aspects of the prosthesis design and its control by the user. Results The great versatility of the SoftHand Pro (a reasearch protpotype) permitted its adaptation to the user requirements. This was experienced by the SoftHand Pro Team during the preparation for different CYBATHLON events (from 2016 to 2020). The mixed power and dexterous hand operations required by each task of the race is inspired by everyday tasks. Our prosthesis was driven by different pilots, with different habits and backgrounds. Consequently, the hand control modality was customized according to the user's preferences. Furthermore, the CYBATH-LON tasks had some variations in this period, promoting the continuous development of our technology with a usercentered approach. In this paper, we describe the participation and preparation of the SoftHand Pro Team from 2016 to 2020 with three pilots and two different activation modalities, hybrid body-controlled and myoelectric control. Conclusions We introduced our pilots, the implementation of the two control modalities, and describe the successful participation in all CYBATHLON events. This work proves the versatility of the system towards the user's preferences and the changes in the race requirements. Finally, we discussed how the CYBATHLON experience and the training in the real-world scenario have driven the evolution of our system and gave us remarkable insights for future perspectives.
Scientific Reports, 2021
Notwithstanding the advancement of modern bionic hands and the large variety of prosthetic hands in the market, commercial devices still present limited acceptance and percentage of daily use. While commercial prostheses present rigid mechanical structures, emerging trends in the design of robotic hands are moving towards soft technologies. Although this approach is inspired by nature and could be promising for prosthetic applications, there is scant literature concerning its benefits for end-users and in real-life scenarios. In this work, we evaluate and assess the role and the benefits of soft robotic technologies in the field of prosthetics. We propose a thorough comparison between rigid and soft characteristics of two poly-articulated hands in 5 non-expert myo-electric prosthesis users in pre- and post-therapeutic training conditions. The protocol includes two standard functional assessments, three surveys for user-perception, and three customized tests to evaluate the sense of ...
Grasp specific and user friendly interface design for myoelectric hand prostheses
IEEE ... International Conference on Rehabilitation Robotics : [proceedings], 2017
This paper presents the design and characterisation of a hand prosthesis and its user interface, focusing on performing the most commonly used grasps in activities of daily living (ADLs). Since the operation of a multi-articulated powered hand prosthesis is difficult to learn and master, there is a significant rate of abandonment by amputees in preference for simpler devices. In choosing so, amputees chose to live with fewer features in their prosthesis that would more reliably perform the basic operations. In this paper, we look simultaneously at a hand prosthesis design method that aims for a small number of grasps, a low complexity user interface and an alternative method to the current use of EMG as a preshape selection method through the use of a simple button; to enable amputees to get to and execute the intended hand movements intuitively, quickly and reliably. An experiment is reported at the end of the paper comparing the speed and accuracy with which able-bodied naive subj...
Human-centered Electric Prosthetic (HELP) Hand
2020
In developing countries such as India, there is a higher rate of amputations among the population but a lack of viable, low cost solutions. Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti (BMVSS), the team designed a functional, robust, and low cost electrically powered prosthetic hand that communicates with people with unilateral, transradial amputations in urban India through a biointerface. The device uses compliant tendon actuation, small linear servos, and a wearable sleeve outfitted with electromyography (EMG) sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The hand is capable of forming three grips through the use of a manually adjustable opposable thumb: the key, pinch, and wrap grips. The hand also provides vibrotactile user feedback upon completion of a grip. The design includes a prosthetic gel liner to provide a layer of cushion and comfort for safe use by the user. These results show that it is possible to create a low cost, electrically powered prosthetic hand for users in developing countries without sacrificing functionality. In order for this design to be truly adjustable to each user, the creation of an easily navigable graphical user interface (GUI) will have to be a future goal. The prosthesis prototype was developed such that future groups can design for manufacturing and distribution in India.
Effects of prosthesis use on the capability to control myoelectric robotic prosthetic hands
2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015
The dexterous natural control of robotic prosthetic hands with non-invasive techniques is still a challenge: surface electromyography gives some control capabilities but these are limited, often not natural and require long training times; the application of pattern recognition techniques recently started to be applied in practice. While results in the scientific literature are promising they have to be improved to reach the real needs. The Ninapro database aims to improve the field of naturally controlled robotic hand prosthetics by permitting to worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark database. Currently, the Ninapro database includes data from 67 intact subjects and 11 amputated subject performing approximately 50 different movements. The data are aimed at permitting the study of the relationships between surface electromyography, kinematics and dynamics. The Ninapro acquisition protocol was created in order to be easy to be reproduced. Currently, the number of datasets included in the database is increasing thanks to the collaboration of several research groups.
IEEE Transactions on Neural Systems and Rehabilitation Engineering
This article evaluates and compares the performance and perception of prosthetic devices based on different design principles, a traditional rigid gripper and an adaptable poly-articulated hand, in a pre-and post-training protocol with an individual with bilateral amputation. As a representative of the first class, we use commercial hands (Ottobock's MyoHand VariPlus Speed), which is a widely adopted model by prosthesis users worldwide. We compare these with two SoftHand Pro hands, which are experimental prototypes exhibiting 19 articulations actuated by one single motor, and are inspired by human hand motor control models. Results show that the individual with bilateral amputation, who was a non-expert myoelectric user, achieved better performance with adaptive poly-articulated hands. Furthermore, the acceptation, satisfaction and perceived functionality of the user were considerably higher for the SoftHand Pro. An observational analysis of the patient's behaviour by experienced therapists suggests that adaptable poly-articulated hands reduced compensatory movements and cognitive load. Using soft technologies may be especially advantageous for individuals with bilateral amputation, who present a very limited residual mobility and can largely benefit from the active use of their artificial arms in everyday life.
Evaluation of User-Prosthesis-Interfaces for sEMG-Based Multifunctional Prosthetic Hands
Sensors
The complexity of the user interfaces and the operating modes present in numerous assistive devices, such as intelligent prostheses, influence patients to shed them from their daily living activities. A methodology to evaluate how diverse aspects impact the workload evoked when using an upper-limb bionic prosthesis for unilateral transradial amputees is proposed and thus able to determine how user-friendly an interface is. The evaluation process consists of adapting the same 3D-printed terminal device to the different user-prosthesis-interface schemes to facilitate running the tests and avoid any possible bias. Moreover, a study comparing the results gathered by both limb-impaired and healthy subjects was carried out to contrast the subjective opinions of both types of volunteers and determines if their reactions have a significant discrepancy, as done in several other studies.