Improving oat b-glucan content by biotechnological methods (original) (raw)
Related papers
An outlook on metabolic pathway engineering in crop plants
Archives of Agriculture and Environmental Science, 2020
To produce the essential secondary metabolites, plants are the major and important target source materials for conducting the high-profile metabolic engineering studies. Metabolic pathway engineering of both microorganism targets and plants target contribute towards important drug discovery. In order to efficiently work out in advanced plant metabolic pathway engineering techniques, a detailed knowledge and expertise is essentially needed regarding the plant cell physiology and the mechanics of plant metabolism. Mathematical and statistical models to scale and map the genome for integrative metabolic pathway activity, signal transduction mechanism in the genome, gene regulation and the networks of protein-protein interaction can provide the in-depth knowledge to work efficiently on plant metabolic pathway engineering studies. Incorporation of omics data into these statistical and mathematical models is crucial in the case of drug discovery using the plant system. Recently, artificia...
Proceedings of the National Academy of Sciences, 2004
The evolution of the ability to synthesize specialized metabolites is likely to have been key for survival and diversification of different plant species. Oats ( Avena spp.) produce antimicrobial triterpenoids (avenacins) that protect against disease. The oat β-amyrin synthase gene AsbAS1 , which encodes the first committed enzyme in the avenacin biosynthetic pathway, is clearly distinct from other plant β-amyrin synthases. Here we show that AsbAS1 has arisen by duplication and divergence of a cycloartenol synthase-like gene, and that its properties have been refined since the divergence of oats and wheat. Strikingly, we have also found that AsbAS1 is clustered with other genes required for distinct steps in avenacin biosynthesis in a region of the genome that is not conserved in other cereals. Because the components of this gene cluster are required for at least four clearly distinct enzymatic processes (2,3-oxidosqualene cyclization, β-amyrin oxidation, glycosylation, and acylatio...