Simple redox-linked proton-transfer design: new insights from structures of quinol-fumarate reductase (original) (raw)

Experimental support for the "E pathway hypothesis" of coupled transmembrane e- and H+ transfer in dihemic quinol:fumarate reductase

Proceedings of the National Academy of Sciences, 2005

Reconciliation of apparently contradictory experimental results obtained on the quinol:fumarate reductase, a diheme-containing respiratory membrane protein complex from Wolinella succinogenes, was previously obtained by the proposal of the so-called ''E pathway hypothesis.'' According to this hypothesis, transmembrane electron transfer via the heme groups is strictly coupled to cotransfer of protons via a transiently established pathway thought to contain the side chain of residue Glu-C180 as the most prominent component. Here we demonstrate that, after replacement of Glu-C180 with Gln or Ile by site-directed mutagenesis, the resulting mutants are unable to grow on fumarate, and the membrane-bound variant enzymes lack quinol oxidation activity. Upon solubilization, however, the purified enzymes display Ϸ1͞10 of the specific quinol oxidation activity of the wild-type enzyme and unchanged quinol Michaelis constants, K m. The refined x-ray crystal structures at 2.19 Å and 2.76 Å resolution, respectively, rule out major structural changes to account for these experimental observations. Changes in the oxidation-reduction heme midpoint potential allow the conclusion that deprotonation of Glu-C180 in the wild-type enzyme facilitates the reoxidation of the reduced high-potential heme. Comparison of solvent isotope effects indicates that a rate-limiting proton transfer step in the wild-type enzyme is lost in the Glu-C180 3 Gln variant. The results provide experimental evidence for the validity of the E pathway hypothesis and for a crucial functional role of Glu-C180.

Analyzing your complexes: structure of the quinol-fumarate reductase respiratory complex

Current Opinion in Structural Biology, 2000

The integral membrane protein complex quinol-fumarate reductase catalyzes the terminal step of a major anaerobic respiratory pathway. The homologous enzyme succinate-quinone oxidoreductase participates in aerobic respiration both as complex II and as a member of the Krebs cycle. Last year, two structures of quinol-fumarate reductases were reported. These structures revealed the cofactor organization linking the fumarate and quinol sites, and showed a cofactor arrangement across the membrane that is suggestive of a possible energy coupling function.

Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain

Current Opinion in Structural Biology, 2013

Cellular respiration is the process that releases energy from food and supplies energy for life processes. The mitochondrial respiratory chain is the final and most important step for cellular respiration and is located on the inner membrane of mitochondrion and comprises four large trans-membrane protein complexes (respiratory chain Complexes I, II, III and IV) as well as ubiquinone between Complexes I/II and III and cytochrome c between Complexes III and IV. The function of mitochondrial respiratory chain is biological oxidation by transferring electrons from NADH and succinate to oxygen and then generating proton gradient across the inner membrane. Such proton gradient is utilized by ATP synthase (ATPase, also called as Complex V) to produce energy molecules ATP. Structural studies of mitochondrial respiratory membrane protein complexes are important to understand the mechanism of electron transfer and the redox-coupled proton translocation across the inner membrane. Here, according to the time line, we reviewed the great achievements on structural studies of mitochondrial respiratory complexes in the past twenty years as well as the recent research progresses on the structures of mitochondrial respiratory supra-complexes.

Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex

Proceedings of the National Academy of Sciences, 2013

As much as two-thirds of the proton gradient used for transmembrane free energy storage in oxygenic photosynthesis is generated by the cytochrome b6f complex. The proton uptake pathway from the electrochemically negative (n) aqueous phase to the n-side quinone binding site of the complex, and a probable route for proton exit to the positive phase resulting from quinol oxidation, are defined in a 2.70-Å crystal structure and in structures with quinone analog inhibitors at 3.07 Å (tridecyl-stigmatellin) and 3.25-Å (2-nonyl-4-hydroxyquinoline N-oxide) resolution. The simplest n-side proton pathway extends from the aqueous phase via Asp20 and Arg207 (cytochrome b6 subunit) to quinone bound axially to heme c(n). On the positive side, the heme-proximal Glu78 (subunit IV), which accepts protons from plastosemiquinone, defines a route for H(+) transfer to the aqueous phase. These pathways provide a structure-based description of the quinone-mediated proton transfer responsible for generation of the transmembrane electrochemical potential gradient in oxygenic photosynthesis.

Structural basis for energy transduction by respiratory alternative complex III

Nature communications, 2018

Electron transfer in respiratory chains generates the electrochemical potential that serves as energy source for the cell. Prokaryotes can use a wide range of electron donors and acceptors and may have alternative complexes performing the same catalytic reactions as the mitochondrial complexes. This is the case for the alternative complex III (ACIII), a quinol:cytochrome c/HiPIP oxidoreductase. In order to understand the catalytic mechanism of this respiratory enzyme, we determined the structure of ACIII from Rhodothermus marinus at 3.9 Å resolution by single-particle cryo-electron microscopy. ACIII presents a so-far unique structure, for which we establish the arrangement of the cofactors (four iron-sulfur clusters and six c-type hemes) and propose the location of the quinol-binding site and the presence of two putative proton pathways in the membrane. Altogether, this structure provides insights into a mechanism for energy transduction and introduces ACIII as a redox-driven proton...

Variation in proton donor/acceptor pathways in succinate:quinone oxidoreductases

FEBS Letters, 2003

The anaerobically expressed fumarate reductase and aerobically expressed succinate dehydrogenase from Escherichia coli comprise two different classes of succinate:quinone oxidoreductases (SQR), often termed respiratory complex II. The X‐ray structures of both membrane‐bound complexes have revealed that while the catalytic/soluble domains are structurally similar the quinone binding domains of the enzyme complexes are significantly different. These results suggest that the anaerobic and aerobic forms of complex II have evolved different mechanisms for electron and proton transfer in their respective membrane domains.

A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I

Febs Letters, 2010

Recently, Sazanov's group reported the X-ray structure of whole complex I [Nature, 465, 441 (2010)], which presented a strong clue for a "piston-like" structure as a key element in an "indirect" proton pump. We have studied the NuoL subunit which has a high sequence similarity to Na + /H + antiporters, as do the NuoM and N subunits. We constructed 27 site-directed NuoL mutants. Our data suggest that the H + /e − stoichiometry seems to have decreased from (4H + /2e − ) in the wild-type to approximately (3H + /2e − ) in NuoL mutants. We propose a revised hypothesis that each of the "direct" and the "indirect" proton pumps transports 2H + per 2e − .

Crystallographic Studies of the Escherichia coli Quinol-Fumarate Reductase with Inhibitors Bound to the Quinol-Binding Site

Journal of Biological Chemistry, 2002

The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integralmembrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH 2 ) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH 2 , bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q P and Q D , indicating their positions proximal (Q P ) or distal (Q D ) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH 2 at the Q P site. In the structures with the inhibitor bound at Q P , no density is observed at Q D , which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q D . A comparison of the Q P site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover.