Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry (original) (raw)
Related papers
Emerging mass spectrometry-based proteomics methodologies for novel biomedical applications
Biochemical Society Transactions
Research into the basic biology of human health and disease, as well as translational human research and clinical applications, all benefit from the growing accessibility and versatility of mass spectrometry (MS)-based proteomics. Although once limited in throughput and sensitivity, proteomic studies have quickly grown in scope and scale over the last decade due to significant advances in instrumentation, computational approaches, and bio-sample preparation. Here, we review these latest developments in MS and highlight how these techniques are used to study the mechanisms, diagnosis, and treatment of human diseases. We first describe recent groundbreaking technological advancements for MS-based proteomics, including novel data acquisition techniques and protein quantification approaches. Next, we describe innovations that enable the unprecedented depth of coverage in protein signaling and spatiotemporal protein distributions, including studies of post-translational modifications, pr...
Mass spectrometry-based proteomics: existing capabilities and future directions
Chemical Society Reviews, 2012
Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health. as a Postdoctoral Research
Proteomics by Mass Spectrometry: Approaches, Advances, and Applications
Annual Review of Biomedical Engineering, 2009
Mass spectrometry (MS) is the most comprehensive and versatile tool in large-scale proteomics. In this review, we dissect the overall framework of the MS experiment into its key components. We discuss the fundamentals of proteomic analyses as well as recent developments in the areas of separation methods, instrumentation, and overall experimental design. We highlight both the inherent strengths and limitations of protein MS and offer a rough guide for selecting an experimental design based on the goals of the analysis. We emphasize the versatility of the Orbitrap, a novel mass analyzer that features high resolution (up to 150,000), high mass accuracy (2-5 ppm), a mass-to-charge range of 6000, and a dynamic range greater than 10 3 . High mass accuracy of the Orbitrap expands the arsenal of the data acquisition and analysis approaches compared with a low-resolution instrument. We discuss various chromatographic techniques, including multidimensional separation and ultra-performance liquid chromatography. Multidimensional protein identification technology (MudPIT) involves a continuum sample preparation, orthogonal separations, and MS and software solutions. We discuss several aspects of MudPIT applications to quantitative phosphoproteomics. MudPIT application to large-scale analysis of phosphoproteins includes (a) a fractionation procedure for motif-specific enrichment of phosphopeptides, (b) development of informatics tools for interrogation and validation of shotgun phosphopeptide data, and (c) in-depth data analysis for simultaneous determination of protein expression and phosphorylation levels, analog to western blot measurements. We illustrate MudPIT application to quantitative phosphoproteomics of the beta adrenergic pathway. We discuss several biological discoveries made via mass spectrometry pipelines with a focus on cell signaling proteomics.
Nature protocols, 2018
Here we present an optimized workflow for global proteome and phosphoproteome analysis of tissues or cell lines that uses isobaric tags (TMT (tandem mass tags)-10) for multiplexed analysis and relative quantification, and provides 3× higher throughput than iTRAQ (isobaric tags for absolute and relative quantification)-4-based methods with high intra- and inter-laboratory reproducibility. The workflow was systematically characterized and benchmarked across three independent laboratories using two distinct breast cancer subtypes from patient-derived xenograft models to enable assessment of proteome and phosphoproteome depth and quantitative reproducibility. Each plex consisted of ten samples, each being 300 μg of peptide derived from <50 mg of wet-weight tissue. Of the 10,000 proteins quantified per sample, we could distinguish 7,700 human proteins derived from tumor cells and 3100 mouse proteins derived from the surrounding stroma and blood. The maximum deviation across replicates...
BJSTR, 2017
Protein analysis is often performed by conventional techniques such as staining of gel-separated proteins or antibody-based methods. With the emergence of the post-genomic and systems biology era there is a paradigm shift from targeted studies involving specific proteins to a more global proteome analysis encompassing all proteins expressed in a certain condition ("omics approach"). Such large scale or global proteomic studies aim at the identification and quantification of altered biological pathways of entire cellular systems in the chosen experimental condition with an unbiased approach. For accurate characterization of the proteome mass spectrometry (MS) is the method of choice since this technique provides molecular specificity and high sensitivity [1]. Abstract Unlike the transcriptome, quantification of the proteome still requires the development of special strategies. Transcriptomics platforms such as microarray-and RNAseq-based approaches are designed to uncover the information at the transcriptome level that in turn shapes the proteome to carry out the functional cellular processes. Since most of the biological processes are controlled by proteins, it is important to quantitatively measure proteome alterations in varying conditions to mechanistically understand how cellular processes are carried out. Within the last decade mass spectrometry increasingly became the method of choice for proteome analyses and now also provides a solid platform for its accurate quantification. The aim of quantitative proteomics is to obtain reliable quantitative information about all the proteins that fall within the mass spectrometric dynamic range.
Mass spectrometry-based proteomics in cell biology
The Journal of Cell Biology, 2010
The principle challenge of cell biology is to reveal the mechanisms and inner workings of cells. In this quest, cells are more and more perceived as systems in which the dynamic interplay of a large number of components determines the output of many biological processes occurring in parallel. To characterize these processes and to reveal their underlying principles, one needs to evaluate the dynamic composition and localization of the molecular components. All cellular processes involve proteins and their characterization has therefore drawn most interest over the years. However, it has been technically challenging to determine their abundance, modification state, and localization in a systematic way. In the absence of system-wide technologies, targeted approaches are currently used to measure the abundance and localization of specific proteins of interest. These rely on the availability of antibodies or epitope-tagged versions of the proteins to detect them by Western blot or microscopy. These workhorse techniques of cell biologists have allowed for the extensive characterization of many cellular processes. However, they often just open a small window into the complex world governing the organization of the cell and highlight only a small part of a large interconnected network of functionally and physically interacting proteins.
BMC bioinformatics, 2014
BackgroundMass spectrometry analyses of complex protein samples yield large amounts of data and specific expertise is needed for data analysis, in addition to a dedicated computer infrastructure. Furthermore, the identification of proteins and their specific properties require the use of multiple independent bioinformatics tools and several database search algorithms to process the same datasets. In order to facilitate and increase the speed of data analysis, there is a need for an integrated platform that would allow a comprehensive profiling of thousands of peptides and proteins in a single process through the simultaneous exploitation of multiple complementary algorithms.ResultsWe have established a new proteomics pipeline designated as APP that fulfills these objectives using a complete series of tools freely available from open sources. APP automates the processing of proteomics tasks such as peptide identification, validation and quantitation from LC-MS/MS data and allows easy...