Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5 (original) (raw)
Related papers
Recent Advances and Challenges in Gene Delivery Mediated by Polyester-Based Nanoparticles
International Journal of Nanomedicine, 2021
Gene therapy is a promising approach for the treatment of several diseases, such as chronic or viral infections, inherited disorders, and cancer. The cellular internalization of exogenous nucleic acids (NA) requires efficient delivery vehicles to overcome their inherent pharmacokinetic drawbacks, e.g. electrostatic repulsions, enzymatic degradation, limited cellular uptake, fast clearance, etc. Nanotechnological advancements have enabled the use of polymer-based nanostructured biomaterials as safe and effective gene delivery systems, in addition to viral vector delivery methods. Among the plethora of polymeric nanoparticles (NPs), this review will provide a comprehensive and in-depth summary of the polyesterbased nanovehicles, including poly(lactic-co-glycolic acid) (PLGA) and polylactic acid (PLA) NPs, used to deliver a variety of foreign NA, e.g. short interfering RNA (siRNA), messenger RNA (mRNA), and plasmid DNA (pDNA). The article will review the versatility of polyester-based nanocarriers including their recent application in the delivery of the clustered, regularly-interspaced, short palindromic repeats/Cas (CRISPR/Cas) genome editing system for treating gene-related diseases. The remaining challenges and future trend of the targeted delivery of this revolutionary genome-editing system will be discussed. Special attention will be given to the pivotal role of nanotechnology in tackling emerging infections such as coronavirus disease 2019 (COVID-19): groundbreaking mRNA vaccines delivered by NPs are currently used worldwide to fight the pandemic, pushing the boundaries of gene therapy.
Nanomedicine-nanotechnology Biology and Medicine, 2007
Cationically modified poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles have recently been introduced as novel carriers for DNA/RNA delivery. The colloidal characteristics of the nanoparticles-particle size and surface charge-are considered the most significant determinants in the cellular uptake and trafficking of the nanoparticles. Therefore, our aim was to introduce chitosan-coated PLGA nanoparticles, whose size and charge are tunable to adapt for a specific task. The results showed that biodegradable nanoparticles as small as 130 nm and adjustable surface charge can be tailored controlling the process parameters. As a proof of concept, the overall potential of these particulate carriers to bind the antisense oligonucleotides, 2′-O-methyl-RNA, and improve their cellular uptake was demonstrated. The study proved the efficacy of chitosan-coated PLGA nanoparticles as a flexible and efficient delivery system for antisense oligonucleotides to lung cancer cells.
International Journal of Pharmaceutics, 2009
Gene therapy based on small interfering RNA (siRNA) has emerged as an exciting new therapeutic approach. However, insufficient cellular uptake and poor stability have limited its usefulness. Polyethyleneimine (PEI) has been extensively studied as a vector for nucleic acids and incorporation of PEI into poly(d,l-lactide-co-glycolide) (PLGA) particles has been shown to be useful in the development of gene delivery. PEI was incorporated into the PLGA particles by spontaneous modified emulsification diffusion method. Incorporation of PEI into PLGA particles with the PLGA to PEI weight ratio 29:1 was found to produce spherical and positively charged nanoparticles where type of polymer, type and concentration of surfactant could affect their physical properties. Particle size of around 100 nm was obtained when 5% (m/v) PVA was used as a stabiliser. PLGA-PEI nanoparticles were able to completely bind siRNA at N/P ratio 20:1 and to provide protection for siRNA against nuclease degradation. In vitro cell culture studies subsequently revealed that PLGA-PEI nanoparticles with adsorbed siRNA could efficiently silence the targeted gene in mammalian cells, better than PEI alone, with acceptable cell viability. PLGA-PEI nanoparticles have been found to be superior to its cationising parent compound; PEI polymer.
Gold, Poly(β-amino ester) Nanoparticles for Small Interfering RNA Delivery
Nano Letters, 2009
The safe and effective delivery of RNA therapeutics remains the major barrier to their broad clinical application. Here we develop a new nanoparticulate delivery system based on inorganic particles and biodegradable polycations. First, gold nanoparticles were modified with the hydrophilic polymer poly(ethylene glycol) (PEG), and then small interfering RNA (siRNA) was conjugated to the nanoparticles via biodegradable disulfide linkages, with ~30 strands of siRNA per nanoparticle. The particles were then coated with a library of end-modified poly(β-amino ester)s (PBAEs), previously identified as capable of facilitating intracellular DNA delivery. Nanoparticulate formulations developed here facilitate high levels of in vitro siRNA delivery, facilitating delivery as good or better than the commercially available lipid reagent, Lipofectamine 2000.
Journal of Biotechnology, 2007
The cationic polylactic acid (PLA) nanoparticle has emerged as a promising non-viral vector for gene delivery because of its biocompatibility and biodegradability. However, they are not capable of prolonging gene transfer and high transfection efficiency. In order to achieve prolonged delivery of cationic PLA/DNA complexes and higher transfection efficiency, in this study, we used copolymer methoxypolyethyleneglycol-PLA (MePEG-PLA), PLA and chitosan (CS) to prepare MePEG-PLA-CS NPs and PLA-CS NPs by a diafiltration method and prepared NPs/DNA complexes through the complex coacervation of nanoparticles with the pDNA. The object of our work is to evaluate the characterization and transfection efficiency of MePEG-PLA-CS versus PLA-CS NPs. The MePEG-PLA-CS NPs have a zeta potential of 15.7 mV at pH 7.4 and size under 100 nm, while the zeta potential of PLA-CS NPs was only 4.5 mV at pH 7.4. Electrophoretic analysis suggested that both MePEG-PLA-CS NPs and PLA-CS NPs with positive charges could protect the DNA from nuclease degradation and cell viability assay showed MePEG-PLA-CS NPs exhibit a low cytotoxicity to normal human liver cells. The potential of PLA-CS NPs and MePEG-PLA-CS NPs as a non-viral gene delivery vector to transfer exogenous gene in vitro and in vivo were examined. The pDNA being carried by MePEG-PLA-CS NPs, PLA-CS NPs and lipofectamine could enter and express in COS7 cells. However, the transfection efficiency of MePEG-PLA-CS/DNA complexes was better than PLA-CS/DNA and lipofectamine/DNA complexes by inversion fluorescence microscope and flow cytometry. It was distinctively to find that the transfection activity of PEGylation of complexes was improved. The nanoparticles were also tested for their ability to transport across the gastrointestinal mucosa in vivo in mice. In vivo experiments showed obviously that MePEG-PLA-CS/DNA complexes mediated higher gene expression in stomach and intestine of BALB/C mice compared to PLA-CS/DNA and lipofectamine/DNA complexes. These results suggested that MePEG-PLA-CS NPs have favorable properties for non-viral gene delivery.
Polymers, 2019
The field of polymeric nanoparticles is quickly expanding and playing a pivotal role in a wide spectrum of areas ranging from electronics, photonics, conducting materials, and sensors to medicine, pollution control, and environmental technology. Among the applications of polymers in medicine, gene therapy has emerged as one of the most advanced, with the capability to tackle disorders from the modern era. However, there are several barriers associated with the delivery of genes in the living system that need to be mitigated by polymer engineering. One of the most crucial challenges is the effectiveness of the delivery vehicle or vector. In last few decades, non-viral delivery systems have gained attention because of their low toxicity, potential for targeted delivery, long-term stability, lack of immunogenicity, and relatively low production cost. In 1987, Felgner et al. used the cationic lipid based non-viral gene delivery system for the very first time. This breakthrough opened th...
Nature Protocols, 2013
RNA nanotechnology is a term that refers to the design, fabrication, and utilization of nanoparticles mainly composed of ribonucleic acids via bottom-up self-assembly. The packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor has been developed into a nanodelivery platform. This protocol describes the synthesis, assembly, and functionalization of pRNA nanoparticles based on three 'toolkits' derived from pRNA structural features: interlocking loops for hand-in-hand interactions, palindrome sequences for foot-to-foot interactions, and an RNA three-way junction for branch-extension. siRNAs, ribozymes, aptamers, chemical ligands, fluorophores, and other functionalities can also be fused to the pRNA prior to the assembly of the nanoparticles, so as to ensure the production of homogeneous nanoparticles and the retention of appropriate folding and function of the incorporated modules. The resulting self-assembled multivalent pRNA nanoparticles are thermodynamically and chemically stable, and they remain intact at ultra-low concentrations. Gene silencing effects are progressively enhanced with increasing number of siRNA in each pRNA nanoparticle. Systemic injection of the pRNA nanoparticles into xenograft-bearing mice has revealed strong binding to tumors without accumulation in vital organs or tissues. The pRNA-based nano-delivery scaffold paves a new way towards nanotechnological application of pRNA-based nanoparticles for disease detection and treatment. The time required for completing one round of this protocol is 3-4 weeks, including in vitro functional assays, or 2-3 months including in vivo studies.
Surface functionalisation of PLGA nanoparticles for gene silencing
Biomaterials, 2010
This work presents a method for decorating the surface of poly (lactide-co-glycolide) (PLGA) nanoparticles with polyethyleneimine (PEI) utilising a cetyl derivative to improve surface functionalisation and siRNA delivery. Sub-micron particles were produced by an emulsion-diffusion method using benzyl alcohol. We demonstrate by x-ray photoelectron spectroscopy (XPS), 2.6 times higher surface presentation of amines using the cetyl derivative compared to non-cetylated-PEI formulations (6.5 and 2.5% surface nitrogen, respectively). The modified particles were shown by spectroscopy, fluorescent microscopy and flow cytometry to bind and mediate siRNA delivery into the human osteosarcoma cell line U2OS and the murine macrophage cell line J774.1. Specific reduction in the anti-apoptotic oncogene BCL-w in U2OS cells was achieved with particles containing cetylated-PEI (53%) with no cellular toxicity. In addition, particles containing cetylated-PEI achieved 64% silencing of TNFa in J774.1 cells. This rapid method for surface modification of PLGA nanoparticles promotes its application for alternative cetylated functional derivatives as a strategy to control specific biological properties of nanoparticles.
2012
The RNA-mediated gene-silencing technology, carried out by small interfering RNAs (siRNAs), has attracted a great deal of attention as novel promising therapeutic strategy in oncology. One of the common themes emerging from the studies on cell-specific delivery of siRNA is the need for optimizing the intracellular trafficking of the siRNA to elicit a silencing response. Polymer nanoparticles have become recognized as an efficiency strategy for oligonucleotide delivery to a specific cell population. Among these carriers, PLGA-co-PEG nanoparticles have attracted much attention since they are assumed to meet the criteria required for successful siRNA delivery: they are sufficiently small for efficient tissue penetration and cellular uptake and offer physical protection against RNase activity as well as a favorable colloidal stability. In this study the ability of a polymeric micelle based system for the targeting and delivery of a siRNA to breast cancer cells was proved using as model the siRNA against the Green Fluorescence Protein (GFP). The efficiencies observed during in vitro studies with a MDA-MB-436/GFP cell line confirmed the potential of this new delivery system but it needs further investigation.