The Numerical Investigation on Vortex Flow Behavior Using FLOW-3D (original) (raw)
2012, Iranica Journal of Energy & Environment
In this paper a numerical investigation is given for a Rankine type vortex flow inside the cylindrical vortex chamber using FLOW-3D. The FLOW-3D is a general purpose computational fluid dynamics (CFD) package. The fluid motion is described with non-linear, transient, second-order differential equations. Additionally the free surface also exists in many simulations carried out with FLOW-3D because flow parameters and materials properties, such as density, velocity and pressure experience a discontinuity at it. After analysis of the vortex by mentioned details, the finding of time-averaged velocity components, turbulent components, turbulence dissipation, in the 2D briefed sections of chamber were depicted. It was found that there are different flow patterns like clockwise/anticlockwise vortices and some sink points combined with each other in different time intervals, decaying and generating along the time. Also the turbulence intensity and dissipations around the boundary conditions of chamber like central flushing discharge are higher than the flow body. It was also found that this CFD package was not able to simulate thoroughly the central air core of chamber after filling of chamber. This analysis is validated by comparison with previous experimental data that was measured in vortex settling basin.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.