Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States (original) (raw)

A genomic scan for age at onset of alzheimer's disease in 437 families from the NIMH genetic initiative

American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008

We performed linkage analysis for age at onset (AAO) in the total Alzheimer's disease (AD) NIMH sample (N = 437 families). Families were subset as late-onset (320 families, AAO ≥65) and early/ mixed (117 families, at least 1 member with 50< AAO <65). Treating AAO as a censored trait, we obtained the gender and APOE adjusted residuals in a parametric survival model and analyzed the residuals as the quantitative trait (QT) in variance-component linkage analysis. For comparison, AAO-age at exam (AAE) was analyzed as the QT adjusting for affection status, gender, and APOE. Heritabilities for residual and AAO-AAE outcomes were 66.3% and 74.0%, respectively for the total sample, 56.0% and 57.0% in the late-onset sample, and 33.0% for both models in the early/ mixed sample. The residual model yielded the largest peaks onchromosome1 with LOD = 2.0 at 190 cM in the total set, LOD = 1.7 at 116 cM on chromosome 3 in the early/mixed subset, and LOD = 1.4 at 71 and 86 cM, respectively, on chromosome 6 in the late-onset subset. For the AAO-AAE outcome model the largest peaks were identified on chromosome 1 at 137 cM (LOD = 2.8) and chromosome 6 at 69 cM (LOD = 2.3) and 86 cM (LOD = 2.2) all in the late-onset subset. Additional peaks with LOD ≥1 were identified on chromosomes 1, 2, 3, 6, 8, 9, 10, and 12 for the total sample and each subset. Results replicate previous findings, but identify additional suggestive peaks indicating the genetics of AAO in AD is complex with many chromosomal regions potentially containing modifying genes.

Homozygous carriers of APP A713T mutation in an autosomal dominant Alzheimer disease family

Neurology, 2015

To report, for the first time, a large autosomal dominant Alzheimer disease (AD) family in which the APP A713T mutation is present in the homozygous and heterozygous state. To date, the mutation has been reported as dominant, and in the heterozygous state associated with familial AD and cerebrovascular lesions. The family described here has been genealogically reconstructed over 6 generations dating back to the 19th century. Plasma β-amyloid peptide was measured. Sequencing of causative AD genes was performed. Twenty-one individuals, all but 1 born from 2 consanguineous unions, were studied: 8 were described as affected through history, 5 were studied clinically and genetically, and 8 were asymptomatic at-risk subjects. The A713T mutation was detected in the homozygous state in 3 patients and in the heterozygous state in 8 subjects (6 asymptomatic and 2 affected). Our findings, also supported by the β-amyloid plasma assay, confirm (1) the pathogenic role of the APP A713T mutation, (...

Role of common and rare APP DNA sequence variants in Alzheimer disease

Neurology, 2012

Objectives: More than 30 different rare mutations, including copy number variants (CNVs), in the amyloid precursor protein gene (APP) cause early-onset familial Alzheimer disease (EOFAD), whereas the contribution of common APP variants to disease risk remains controversial. In this study we systematically assessed the role of both rare and common APP DNA variants in Alzheimer disease (AD) families.

ALZHEIMER'S RESEARCH & THERAPY_AD GENETICS DEBATE_2013.pdf

Several genetic variants have been shown to modulate the risk of developing Alzheimer's disease (AD). Largescale, international eff orts in the fi eld of AD genetics have led to the identifi cation of AD forms showing familial clustering, which are caused by inherited single-gene mutations. Familial AD (FAD) is generally characterized by an early (<60 years) or very early (30 to 50 years) age at onset and accounts for less than 5% of all of the AD cases . A signifi cant proportion of FAD cases is caused by autosomal dominant, highly penetrant mutations in at least three diff erent genes, that is, amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). At the time of writing, the Alzheimer Disease & Frontotemporal Dementia Mutation database lists a total of 231 FAD-causing pathogenic mutations (33 pathogenic variants for APP, 185 for PSEN1, and 13 for PSEN2) [2].

Familial Alzheimer disease associated with A713T mutation in APP

Neuroscience Letters, 2004

Mutations in APP are associated with familial early-onset Alzheimer disease (FAD). Examination of the genomic sequence in one patient with FAD revealed a change located in the axon 17 of the APP gene at position 275329G>A (GenBank accession number: D87675; GI: 2429080); cDNA sequence 2137G>A (GenBank accession number: X06989; GI: 28720). This corresponds to the mutation A713T in APP. AD stage VI of neurofibrillary degeneration and stage C of A␤-amyloid burden was found at the post-mortem neuropathological examination. Previous studies have suggested that the mutation A713T in APP is a silent mutation or polymorphism. However, we have not found this change in APP in a control population analyzed by the amplification-refractory mutation system (ARMS). It is concluded that A713T in APP is implicated in the pathogenesis of AD. Since the immunohistochemical study indicates that A713T mutation is not likely to relate with A␤-amyloid processing, the causative role of this rare mutation remains to be warranted.

Early-Onset Autosomal Dominant Alzheimer Disease: Prevalence, Genetic Heterogeneity, and Mutation Spectrum

American Journal of Human Genetics, 1999

To determine the prevalence of early-onset Alzheimer disease (EOAD) and of autosomal dominant forms of EOAD (ADEOAD), we performed a population-based study in the city of Rouen (426,710 residents). EOAD was defined as onset of disease at age !61 years, and ADEOAD was defined as the occurrence of at least three EOAD cases in three generations. Using these stringent criteria, we calculated that the EOAD and ADEOAD prevalences per 100,000 persons at risk were 41.2 and 5.3, respectively. We then performed a mutational analysis of the genes for amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) in 34 families with ADEOAD ascertained in France. In 19 (56%) of these families, we identified 16 distinct PSEN1 missense mutations, including 4 (Thr147Ile, Trp165Cys, Leu173Trp, and Ser390Ile) not reported elsewhere. APP mutations, including a novel mutation located at codon 715, were identified in 5 (15%) of the families. In the 10 remaining ADEOAD families and in 9 additional autosomal dominant Alzheimer disease families that did not fulfill the strict criteria for ADEOAD, no PSEN1, PSEN2, or APP mutation was identified. These results show that (1) PSEN1 and APP mutations account for 71% of ADEOAD families and (2) nonpenetrance at age !61 years is probably infrequent for PSEN1 or APP mutations.

Linkage and Association Studies Identify a Novel Locus for Alzheimer Disease at 7q36 in a Dutch Population-Based Sample

The American Journal of Human Genetics, 2005

We obtained conclusive linkage of Alzheimer disease (AD) with a candidate region of 19.7 cM at 7q36 in an extended multiplex family, family 1270, ascertained in a population-based study of early-onset AD in the northern Netherlands. Single-nucleotide polymorphism and haplotype association analyses of a Dutch patient-control sample further supported the linkage at 7q36. In addition, we identified a shared haplotype at 7q36 between family 1270 and three of six multiplex AD-affected families from the same geographical region, which is indicative of a founder effect and defines a priority region of 9.3 cM. Mutation analysis of coding exons of 29 candidate genes identified one linked synonymous mutation, g.38030GrC in exon 10, that affected codon 626 of the PAX transactivation domain interacting protein gene (PAXIP1). It remains to be determined whether PAXIP1 has a functional role in the expression of AD in family 1270 or whether another mutation at this locus explains the observed linkage and sharing. Together, our linkage data from the informative family 1270 and the association data in the populationbased early-onset AD patient-control sample strongly support the identification of a novel AD locus at 7q36 and re-emphasize the genetic heterogeneity of AD.

Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

PubMed, 1992

A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu-->Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu-->Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambiguously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond theta = .10 for the Volga German kindreds, theta = .20 for early-onset non-Volga Germans, and theta = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds.