Role of the effective mass and interfacial dipoles on exciton dissociation in organic donor-acceptor solar cells (original) (raw)

On the Dissociation Efficiency of Charge Transfer Excitons and Frenkel Excitons in Organic Solar Cells: A Luminescence Quenching Study

The Journal of Physical Chemistry C, 2010

The field dependence of photocurrent found in many organic solar cells is a significant and detrimental setback for internal quantum efficiency. In this work we study the important contribution to this field dependence due to the dissociation efficiency of the weakly bound interfacial charge transfer (CT) state, crucial for organic bulk heterojunction solar cells. Three different donor polymers and two different acceptors are examined, and their respective dissociation characteristics are evaluated by photoluminescence (PL) quenching, both for Frenkel excitons and for the intermolecular charge transfer excitons. We observe that while the field-dependent photocurrent for pure polymers does correlate well with quenching efficiency, the CT exciton quenching from the blend generally displays a less pronounced correlation with extracted photocurrent. We further note that while the electroluminescence and photoluminescence of the pure polymer are identical, we observe a red shift for the blend electroluminescence. This indicates that lower energetic states, not visible in PL, are available in the blend. The emissive state of the blends probed by PL is therefore proposed to originate from sites that are involved in photocurrent generation to a lesser extent.

A Combined Theoretical and Experimental Study of Dissociation of Charge Transfer States at the Donor-Acceptor Interface of Organic Solar Cells

The journal of physical chemistry. B, 2015

The observation that in efficient organic solar cells almost all electron-hole pairs generated at the donor-acceptor interface escape from their mutual coulomb potential remains to be a conceptual challenge. It has been argued that it is the excess energy dissipated in the course of electron or hole transfer at the interface that assists this escape process. The current work demonstrates that this concept is unnecessary to explain the field dependence of electron-hole dissociation. It is based upon the formalism developed by Arkhipov and co-workers as well as Baranovskii and co-workers. The key idea is that the binding energy of the dissociating "cold" charge-transfer state is reduced by delocalization of the hole along the polymer chain, quantified in terms of an "effective mass", as well as the fractional strength of dipoles existent at the interface in the dark. By covering a broad parameter space, we determine the conditions for efficient electron-hole dissoc...

Origin of Charge Transfer Exciton Dissociation in Organic Solar Cells

Excitons, 2018

Using a temperature (T)-dependent tight-binding (TB) model for an electron-hole pair at the donor-acceptor (DA) interface, we investigate the dissociation of charge transfer exciton (CTE) into free carriers, that is, an electron and a hole. We observe the existence of the localization-delocalization transition at a critical T, below which the charges are localized to the DA interface, and above which the charges are delocalized over the system. This explains the CTE dissociation observed in organic solar cells. The present study highlights the combined effect of finite T and carrier delocalization in the CTE dissociation.

Nanoscale Engineering of Exciton Dissociating Interfaces in Organic Photovoltaics

Journal of Nano Research, 2011

Interfaces are inherent in and essential to organic electronic devices. At every interface, both organic/organic and organic/inorganic, the potential to utilize nanostructuring to control device performance is very high. In this paper, we focus on one example of nanostructuring at the donor/acceptor heterojunction in organic photovoltaics, with the purpose of modifying efficiency by four orders of magnitude. We show that the length of the exciton dissociating interface can be tuned by changing the substrate temperature for small molecule heterojunction photodiodes based on crystalline DIP/C 60 mixtures. Due to the tuneable interface morphology, the performance of such devices can be changed from poor performing planar heterojunctions to higher efficiency ordered nanoscale bulk heterojunction structures. In this way, highly crystalline DIP can be thought of as a natural "bulk" heterojunction.

Exciton dissociation dynamics in model donor-acceptor polymer heterojunctions. I. Energetics and spectra

The Journal of chemical …, 2005

In this paper we consider the essential electronic excited states in parallel chains of semiconducting polymers that are currently being explored for photovoltaic and light-emitting diode applications. In particular, we focus upon various type II donor-acceptor heterojunctions and explore the relation between the exciton binding energy to the band off-set in determining the device characteristic of a particular type II heterojunction material. As a general rule, when the exciton binding energy is greater than the band off-set at the heterojunction, the exciton will remain the lowest energy excited state and the junction will make an efficient light-emitting diode. On the other hand, if the off-set is greater than the exciton binding energy, either the electron or hole can be transferred from one chain to the other. Here we use a two-band exciton to predict the vibronic absorption and emission spectra of model polymer heterojunctions. Our results underscore the role of vibrational relaxation and suggest that intersystem crossings may play some part in the formation of charge-transfer states following photoexcitation in certain cases.

Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Förster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be ≤ 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Simplified Charge Separation Energetics in a Two-Dimensional Model for Polymer-Based Photovoltaic Cells

The Journal of Physical Chemistry B, 2005

An extension of our two-dimensional working model for photovoltaic behavior in binary polymer and/or molecular photoactive blends is presented. The objective is to provide a more-realistic description of the charge generation and charge separation processes in the blend system. This is achieved by assigning an energy to each of the possible occupation states, describing the system according to a simple energy model for exciton and geminate electron-hole pair configurations. The energy model takes as primary input the ionization potential, electron affinity and optical gap of the components of the blend. The underlying photovoltaic model considers a nanoscopic subvolume of a photoactive blend and represents its p-and n-type domain morphology, in terms of a two-dimensional network of donor and acceptor sites. The nearest-neighbor hopping of charge carriers in the illuminated system is described in terms of transitions between different occupation states. The equations governing the dynamics of these states are cast into a linear master equation, which can be solved for arbitrary two-dimensional donor-acceptor networks, assuming stationary conditions. The implications of incorporating the energy model into the photovoltaic model are illustrated by simulations of the short circuit current versus thickness of the photoactive blend layer for different choices of energy parameters and donor-acceptor topology. The results suggest the existence of an optimal thickness of the photoactive film in bulk heterojunctions, based on kinetic considerations alone, and that this optimal thickness is very sensitive to the choice of energy parameters. The results also indicate space-charge limiting effects for interpenetrating donor-acceptor networks with characteristic domain sizes in the nanometer range and high driving force for the photoinduced electron transfer across the donor-acceptor internal interface.