Beef Cattle Muscularity Candidate Genes (original) (raw)

Mapping of quantitative trait loci (QTL) for muscularity in beef cattle

2009

Muscularity is a potential indicator for the selection of more productive cattle. Mapping quantitative trait loci (QTL) for traits related to muscularity is useful to identify the genomic regions where the genes affecting muscularity reside. QTL analysis from a Limousin-Jersey double backcross herd was conducted using QTL Express software with cohort and breed as the fixed effects. Nine QTL suggested to have an association with muscularity were identified on cattle chromosomes BTA 1, 2, 3, 4, 5, 8, 12, 14 and 17. The myostatin gene is located at the centromeric end of chromosome 2 and not surprisingly, the Limousin myostatin F94L variant accounted for the QTL on BTA2. However, when the myostatin F94L genotype was included as an additional fixed effect, the QTL on BTA17 was also no longer significant. This suggests that there may be gene(s) that have epistatic effects with myostatin located on cattle chromosome 17.

Inferring the recent ancestry of myostatin alleles affecting muscle mass in cattle

Animal Genetics, 2013

Double muscling is an inherited condition in cattle characterised by large increases in muscle mass. Mutations in the myostatin (MSTN) gene, responsible for double muscling, were targeted in this study to estimate the time since the most recent common ancestor (TMRCA) for Q204X (p.Gln204*), E226X (p.Glu226*), 821del11 (c.821del11), E291X (p.Glu291*), C313Y (p.Cys313Tyr) and the more phenotypically moderate F94L (p.Phe94Leu) mutation. Genetic variability was examined in eight regions upstream and downstream of the MSTN locus. The molecular distance of the homozygous region associated with each MSTN allele was used to estimate the TMRCA. Long homozygous segments were associated with the MSTN alleles (mostly > 2 Mb), compared to short segments (130 kb) for cattle wild type at the double muscling and F94L sites. Estimates of time indicated that each MSTN allele had a recent common ancestor (<400 years ago). The results from this study, and the increasing frequency of these MSTN alleles in some cattle breeds, demonstrate recent positive selection.

Quantitative analysis of performance, carcass and meat quality traits in cattle from two Australian beef herds in which a null myostatin allele is segregating

Animal Production Science, 2009

Two Australian beef cattle herds, in which selection for muscularity was a primary objective, were used in this study to identify bovine myostatin (MSTN) mutations associated with increased muscling, and to assess associations between genotype and performance, carcass and meat quality traits. One was a research herd (herd A) established from Angus · Hereford cows, and comprised a high and low muscle selection line. The other (herd B) was a commercial beef enterprise with cattle of Angus and Charolais origin. Sequencing of the MSTN coding region and flanking splice junctions in an initial sample of 34 animals from both herds identified the 821 del11 mutation as well as six other polymorphic sites. The nucleotide 374-50C > T polymorphism in intron 1 was found to be in linkage disequilibrium with the 821 del11 mutation, with both variants confined to the high muscle selection line in herd A. No other variants were exclusive to either of the two herd A selection lines. The effect of the 821 del11 mutation was further investigated in a total of 803 cattle from both herds. A relatively high prevalence of 821 del11 heterozygotes (herd A 16%; herd B 23%) was found and heterozygotes had significant advantages in eye muscle area and muscle score over their wildtype counterparts, and did not differ in meat quality. Retail beef yield from steers was higher for the 821 del11 heterozygotes from herd A (67.0 v. 63.5%) and herd B (71.8 v. 68.6%), relative to homozygous wildtype contemporaries, demonstrating the benefits of incorporating single null MSTN alleles into breeding programs.

Simultaneous genotyping to detect myostatin gene polymorphism in beef cattle breeds

Journal of Animal Breeding and Genetics, 2002

SummaryThe myostatin gene codes for a growth factor involved in muscle development, and polymorphism in this gene can have important economic consequences. Nine mutations affecting the amino‐acidic sequence have already been described, six of which are disruptive, inactivating the protein and causing bovine muscular hypertrophy. As the number of known mutations grows, it is necessary to develop a simple, routinely usable technique able to screen individuals in all populations. The oligonucleotide ligation assay (OLA) is proposed here for the rapid genotyping of the nine mutations known affecting the coding sequence in the main breeds of beef cattle. This technique showed its ability to reveal the genotype of individuals being a good tool to determine the frequency of each mutation in a population. The procedure is very flexible as new mutations can be added and removed at any time. Depending on the genotype of each individual, the technique allows breeders to make quick decisions on...

Dating the onset of some mutations in myostatin gene determining the double muscled phenotype in beef cattle

Italian Journal of Animal Science, 2003

RIASSUNTO -Datazione della comparsa di alcune mutazioni al gene della miostatina causative del fenotipo "doppia coscia" -La miostatina è una proteina codificata dal gene GDF8 che funziona come regolatore negativo della crescita muscolare. In diverse razze bovine è stato visto che la presenza di una miostatina malfunzionante, spesso in conseguenza a mutazioni nel terzo esone, causa il fenotipo "doppia coscia". In alcune razze la selezione ha provocato la fissazione degli alleli mutati (Blu Belga, Piemontese), mentre nella Marchigiana la frequenza di tale alleli è limitata. Nel presente lavoro abbiamo datato la comparsa della mutazione in tali razze utilizzando marcatori molecolari microsatelliti in linkage sullo stesso cromosoma della miostatina (2). Tutte e tre le razze risultano aver acquisito la rispettiva mutazione piuttosto recentemente, in particolare la Marchigiana. Per quest'ultima il linkage disequilibrium è ancora presente per larga parte del cromosoma 2.

The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds1

Journal of Animal Science, 2009

The availability of genetic tests to detect different mutations in the myostatin gene allows the identification of heterozygous animals and would warrant the superiority of these animals for slaughter performance if this superiority is confirmed. Thus, 2 mutations of this gene, Q204X and nt821, were studied in 3 French beef breeds in the program Qualvigène. This work was done with 1,114 Charolais, 1,254 Limousin, and 981 Blonde d'Aquitaine young bulls from, respectively, 48, 36, and 30 sires and slaughtered from 2004 to 2006. In addition to the usual carcass traits recorded at slaughter (e.g., carcass yield, muscle score), carcass composition was estimated by weighing internal fat and dissecting the 6th rib. The muscle characteristic traits analyzed were lipid and collagen contents, muscle fiber section area, and pH. Regarding meat quality, sensory qualities of meat samples were evaluated by a taste panel, and Warner-Bratzler shear force was measured. Deoxyribonucleic acid was extracted from the blood samples of all calves, the blood samples of 78% of the dams, and the blood or semen samples of all the sires. Genotypes were determined for 2 disruptive mutations, Q204X and nt821. Analyses were conducted by breed. The superiority of carcass traits of calves carrying one copy of the mutated allele (Q204X or nt821) over noncarrier animals was approximately +1 SD in the Charolais and Limousin breeds but was not significant in the Blonde d'Aquitaine. In the Charolais breed, for which the frequency was the greatest (7%), young bulls carrying the Q204X mutation presented a carcass with less fat, less intramuscular fat and collagen contents, and a clearer and more tender meat than those of homozygous-normal cattle. The meat of these animals also had slightly less flavor. Also in the Charolais breed, 13 of 48 sires were heterozygous. For each sire, the substitution effect of the wild allele by the mutant allele was approximately +1 SD for carcass conformation and yield, showing that the estimate of the substitution effect was independent of family structure, as it ought to be for a causal mutation. These results illustrate the challenge of using genetic tests to detect animals with the genetic potential for greater grades of carcasses and meat quality.

The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds

Journal of Animal Science

The availability of genetic tests to detect different mutations in the myostatin gene allows the identification of heterozygous animals and would warrant the superiority of these animals for slaughter performance if this superiority is confirmed. Thus, 2 mutations of this gene, Q204X and nt821, were studied in 3 French beef breeds in the program Qualvigène. This work was done with 1,114 Charolais, 1,254 Limousin, and 981 Blonde d'Aquitaine young bulls from, respectively, 48, 36, and 30 sires and slaughtered from 2004 to 2006. In addition to the usual carcass traits recorded at slaughter (e.g., carcass yield, muscle score), carcass composition was estimated by weighing internal fat and dissecting the 6th rib. The muscle characteristic traits analyzed were lipid and collagen contents, muscle fiber section area, and pH. Regarding meat quality, sensory qualities of meat samples were evaluated by a taste panel, and Warner-Bratzler shear force was measured. Deoxyribonucleic acid was e...

Expression of Myostatin Gene in Belgian Blue and Ongole Grade Crossbred Cattle

Buletin Peternakan, 2022

Investigating Myostatin (MSTN) as a potent inhibitor of skeletal muscle growth and development to produce excessive muscles is extremely essential for livestock breeding. This study aimed to analyze the expression of the MSTN gene and its relationships with genotype and phenotype (normal-muscled vs double-muscled) of Belgian Blue (BB) x Ongole Grade (PO) crossbred cattle. For that purpose, 12 animals from BB, PO, BB x PO F1, and BB x PO F2 cattle (3 animals each) raised at Balai Embrio Ternak (BET) Cipelang Bogor, West Java were used for blood sample collection. Genotyping analysis was performed using the PCR-RFLP method withprimer F: 5’-CTC TTC TTT CCT TTC CAT ACA GAC-3’ and R: 5’-AGG GGA AGA CCT TCC ATG TT-3’, while the MSTN gene expression was analyzed using the qPCR technique. As results, three genotypes: del.11/del.11, +/del.11, and +/+ were detected. The del.11/del.11 genotype, which showed a double-muscled phenotype was found in BB cattle and BB x PO F2 cattle. The +/del.11 g...