Quantum memories (original) (raw)

Quantum Memories. A Review based on the European Integrated Project

We perform a review of various approaches to the implementation of quantum memories, with an emphasis on activities within the quantum memory sub-project of the EU Integrated Project "Qubit Applications". We begin with a brief overview over different applications for quantum memories and different types of quantum memories. We discuss the most important criteria for assessing quantum memory performance and the most important physical requirements. Then we review the different approaches represented in "Qubit Applications" in some detail. They include solid-state atomic ensembles, NV centers, quantum dots, single atoms, atomic gases and optical phonons in diamond. We compare the different approaches using the discussed criteria. PACS. 03.67.-a Quantum information -03.67.Hk Quantum communication -03.67.Lx Quantum computation architectures and implementations -42.50.Ct Quantum description of interaction of light and matter; related experiments -42.50.Md Optical transient phenomena: quantum beats, photon echo, freeinduction decay, dephasings and revivals, optical nutation, and self-induced transparency

Focus on Quantum Memories

2015

Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental and theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.

Focus on Quantum Memory

New Journal of Physics, 2015

Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental and theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.

Prospective applications of optical quantum memories

Journal of Modern Optics, 2013

An optical quantum memory can be broadly defined as a system capable of storing a useful quantum state through interaction with light at optical frequencies. During the last decade, intense research was devoted to their development, mostly with the aim of fulfilling the requirements of their first two applications, namely quantum repeaters and linear-optical quantum computation. A better understanding of those requirements then motivated several different experimental approaches. Along the way, other exciting applications emerged, such as as quantum metrology, single-photon detection, tests of the foundations of quantum physics, deviceindependent quantum information processing and nonlinear processing of quantum information. Here we review several prospective applications of optical quantum memories with a focus on recent experimental achievements pertaining to these applications. This review highlights that optical quantum memories have become essential for the development of optical quantum information processing.

Atomic quantum memories for light

We consider the coherent stimulated Raman process developing in an optically dense and disordered atomic medium in application to the quantum memory scheme. Our theoretical model predicts that the hyperfine interaction in the excited state of alkali atoms can positively affect on the quantum memory efficiency. Based on the concept of the coherent information transfer we analyze and compare the memory requirements for storage of single photon and macroscopic multi-photon light pulses.

Towards high-speed optical quantum memories

2010

Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers [1] and quantum communications . So far, quantum memories have operated with bandwidths that limit data rates to MHz. Here we report the coherent storage and retrieval of sub-nanosecond low intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium vapor. The novel memory interaction takes place via a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field . This allows for an increase in data rates by a factor of almost 1000 compared to existing quantum memories. The memory works with a total efficiency of 15% and its coherence is demonstrated by directly interfering the stored and retrieved pulses. Coherence times in hot atomic vapors are on the order of microseconds [9] -the expected storage time limit for this memory.

Optical quantum memory

Nature Photonics, 2009

Quantum memory is important to quantum information processing in many ways: a synchronization device to match various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a tool to convert heralded photons to photons-on-demand. In addition to quantum computing, quantum memory would be instrumental for the implementation of long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the multitude of optical quantum memory mechanisms being studied: optical delay lines, cavities, electromagnetically-induced transparency, photon-echo, and off-resonant Faraday interaction. Here we report on the state-of-the-art in the field of optical quantum memory, including criteria for successful quantum memory and current performance levels.

Quantum memory for light

Physical Review A, 2000

We propose an efficient method for mapping and storage of a quantum state of propagating light in atoms. The quantum state of the light pulse is stored in two sublevels of the ground state of a macroscopic atomic ensemble by activating a synchronized Raman coupling between the light and atoms. We discuss applications of the proposal in quantum information processing and in atomic clocks operating beyond quantum limits of accuracy. The possibility of transferring the atomic state back on light via teleportation is also discussed. 42.50.Lc, 42.50.Dv, 42.50.Ct, 06.30.Ft Light is an ideal carrier of quantum information, but photons are difficult to store for a long time. In order to implement a storage device for quantum information transmitted as a light signal, it is necessary to faithfully map the quantum state of the light pulse onto a medium with low dissipation, allowing for storage of this quantum state. Depending on the particular application of the memory, the next step may be either a (delayed) measurement projecting the state onto a certain basis, or further processing of the stored quantum state, e.g., after a read-out via the teleportation process. The delayed projection measurement is relevant for the security of various quantum cryptography and bit commitment schemes [1]. The teleportation read-out is relevant for full scale quantum computing.

Quantum memory with optically trapped atoms

Physical review letters, 2008

We report the experimental demonstration of a quantum memory for collective atomic states in a far-detuned optical dipole trap. Generation of the collective atomic state is heralded by the detection of a Raman scattered photon and accompanied by storage in the ensemble of atoms. The optical dipole trap provides confinement for the atoms during the quantum storage while retaining the atomic coherence. We probe the quantum storage by cross-correlation of the photon pair arising from the Raman scattering and the retrieval of the atomic state stored in the memory. Non-classical correlations are observed for storage times up to 60 µs.