Rosenthal operator spaces (original) (raw)

2007, arXiv (Cornell University)

Abstract

In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an L p-space, then it is either a L p-space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non-Hilbertian complemented operator subspaces of non commutative L p-spaces and show that this class is much richer than in the commutative case. We investigate the local properties of some new classes of operator spaces for every 2 < p < ∞ which can be considered as operator space analogues of the Rosenthal sequence spaces from Banach space theory, constructed in 1970. Under the usual conditions on the defining sequence σ we prove that most of these spaces are operator L p-spaces, not completely isomorphic to previously known such spaces. However it turns out that some column and row versions of our spaces are not operator L p-spaces and have a rather complicated local structure which implies that the Lindenstrauss-Rosenthal alternative does not carry over to the non-commutative case.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (28)

  1. J. Arazy and J. Lindenstrauss, Some linear topological properties of the spaces C p of operators on Hilbert space, Compositio Math. 30 (1975), 81-111.
  2. J. Arazy, On large subspaces of the Schatten p-classes, Compositio Math. 41 (1980), 297- 336.
  3. J. Bourgain, H.P. Rosenthal, and G. Schechtman, An ordinal L p -index for Banach spaces, with application to complemented subspaces of L p , Annals of Math. bf 114 (1981), 193- 228.
  4. E.G. Effros and Z-J. Ruan, OL p spaces, Contemporary Math. Amer. Math. Soc. 228 (1998), 51-77.
  5. E.G. Effros and Z-J. Ruan, Operator spaces, London Math. Soc. New Series 23, Oxford University Press, 2000.
  6. F. Hansen and G.K. Pedersen, Pertubation formulas for traces on C * -algebras, Publ. RIMS, Kyoto Univ. 31 (1995), 169-178.
  7. U. Haagerup, H.P. Rosenthal and F.A. Sukochev, Banach embedding properties of non- commutative L p -spaces, Memoirs of the Amer. Math. Soc. 163 no 766 (2003).
  8. W.B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Ba- nach spaces, Memoirs of the Amer. Math. Soc. 217 (1979).
  9. M. Junge, Doob's inequality for non-commutative martingales, J. Reine Angw. Math. 549 (2002), 149-190.
  10. M. Junge and Q. Xu, Non-commutative Burkholder-Rosenthal inequalities, Ann. Probab. 31 (2003), 948-995.
  11. M. Junge and Z.-J. Ruan, Approximation properties for non-commutative L p -spaces as- sociated with discrete groups, Duke Math. J. 117 (2003), 313-341.
  12. M. Junge, Fubini's theorem for ultraproducts of non-commutative L p -spaces, Canad. J. Math. 56 (2004), 983-1021.
  13. M. Junge and Q. Xu, Non-commutative Burkholder-Rosenthal inequalities II: Applica- tions, Preprint.
  14. M. Junge, N.J. Nielsen, Z.-J. Ruan, and Q. Xu, OL p spaces -The local structure of non- commutative L p -spaces I, Advances in Math. 187 (2004), 257-319.
  15. R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras, Vol II. Advanced theory, American Mathematical Society, Providence, RI, 1997.
  16. J.-P. Kahane, Some random series of functions, 2nd Edition, Heath, Cambridge University Press, Cambridge 1985.
  17. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces 1. Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer Verlag, Berlin, 1977.
  18. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Ergeb. Math. Grenzgeb. 97, Springer Verlag, Berlin, 1979.
  19. J. Lindenstrauss and H.P. Rosenthal, The L p -spaces, Israel J. Math. 7 (1969), 325-349.
  20. F. Lust-Piquard, Inégalités de Khitchine dans C p (1 < p < ∞), C. R. Acad. Sci. Paris 303 (1986), 289-292.
  21. J. Marcolino, La stabilité des espaces L p non-commutatifs, Math. Scand. 81 (1997), 212- 219.
  22. G. Pisier, Some results on Banach spaces without local unconditional structure, Compo- sitio Math. 37 (1978), 3-19.
  23. G. Pisier, Non-commutative vector valued L p -spaces and completely p-summing maps, Astérisque 247.
  24. Y. Raynaud, On ultrapowers of non-commutative L p spaces, J. Operator Theory 48 (2002), 41-68.
  25. Y. Raynaud and X. Xu, On subspaces of non-commutative L p -spaces, J. Funct. Anal. 203 (2003), 149-196.
  26. H.P. Rosenthal, On the subspaces of L p (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.
  27. F.A. Suckochev Non-isomorphisms of L p -spaces associated with finite or infinite von Neu- mann algebras, Proc. Amer. Math. Soc. 124 (1996), 1517-1527.
  28. M. Takesaki, Theory of operator algebras I, Springer Verlag, New York, 2001. Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Il 61801, U.S.A. junge@.math.uiuc.edu Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, njn@imada.sdu.dk Department of Mathematics, University of California, Irvine, 103 MSTB, Irvine, CA 92697-3875, U.S.A. toikhber@math.uci.edu