Rosenthal operator spaces (original) (raw)
2007, arXiv (Cornell University)
Abstract
In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an L p-space, then it is either a L p-space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non-Hilbertian complemented operator subspaces of non commutative L p-spaces and show that this class is much richer than in the commutative case. We investigate the local properties of some new classes of operator spaces for every 2 < p < ∞ which can be considered as operator space analogues of the Rosenthal sequence spaces from Banach space theory, constructed in 1970. Under the usual conditions on the defining sequence σ we prove that most of these spaces are operator L p-spaces, not completely isomorphic to previously known such spaces. However it turns out that some column and row versions of our spaces are not operator L p-spaces and have a rather complicated local structure which implies that the Lindenstrauss-Rosenthal alternative does not carry over to the non-commutative case.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (28)
- J. Arazy and J. Lindenstrauss, Some linear topological properties of the spaces C p of operators on Hilbert space, Compositio Math. 30 (1975), 81-111.
- J. Arazy, On large subspaces of the Schatten p-classes, Compositio Math. 41 (1980), 297- 336.
- J. Bourgain, H.P. Rosenthal, and G. Schechtman, An ordinal L p -index for Banach spaces, with application to complemented subspaces of L p , Annals of Math. bf 114 (1981), 193- 228.
- E.G. Effros and Z-J. Ruan, OL p spaces, Contemporary Math. Amer. Math. Soc. 228 (1998), 51-77.
- E.G. Effros and Z-J. Ruan, Operator spaces, London Math. Soc. New Series 23, Oxford University Press, 2000.
- F. Hansen and G.K. Pedersen, Pertubation formulas for traces on C * -algebras, Publ. RIMS, Kyoto Univ. 31 (1995), 169-178.
- U. Haagerup, H.P. Rosenthal and F.A. Sukochev, Banach embedding properties of non- commutative L p -spaces, Memoirs of the Amer. Math. Soc. 163 no 766 (2003).
- W.B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Ba- nach spaces, Memoirs of the Amer. Math. Soc. 217 (1979).
- M. Junge, Doob's inequality for non-commutative martingales, J. Reine Angw. Math. 549 (2002), 149-190.
- M. Junge and Q. Xu, Non-commutative Burkholder-Rosenthal inequalities, Ann. Probab. 31 (2003), 948-995.
- M. Junge and Z.-J. Ruan, Approximation properties for non-commutative L p -spaces as- sociated with discrete groups, Duke Math. J. 117 (2003), 313-341.
- M. Junge, Fubini's theorem for ultraproducts of non-commutative L p -spaces, Canad. J. Math. 56 (2004), 983-1021.
- M. Junge and Q. Xu, Non-commutative Burkholder-Rosenthal inequalities II: Applica- tions, Preprint.
- M. Junge, N.J. Nielsen, Z.-J. Ruan, and Q. Xu, OL p spaces -The local structure of non- commutative L p -spaces I, Advances in Math. 187 (2004), 257-319.
- R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras, Vol II. Advanced theory, American Mathematical Society, Providence, RI, 1997.
- J.-P. Kahane, Some random series of functions, 2nd Edition, Heath, Cambridge University Press, Cambridge 1985.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces 1. Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer Verlag, Berlin, 1977.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Ergeb. Math. Grenzgeb. 97, Springer Verlag, Berlin, 1979.
- J. Lindenstrauss and H.P. Rosenthal, The L p -spaces, Israel J. Math. 7 (1969), 325-349.
- F. Lust-Piquard, Inégalités de Khitchine dans C p (1 < p < ∞), C. R. Acad. Sci. Paris 303 (1986), 289-292.
- J. Marcolino, La stabilité des espaces L p non-commutatifs, Math. Scand. 81 (1997), 212- 219.
- G. Pisier, Some results on Banach spaces without local unconditional structure, Compo- sitio Math. 37 (1978), 3-19.
- G. Pisier, Non-commutative vector valued L p -spaces and completely p-summing maps, Astérisque 247.
- Y. Raynaud, On ultrapowers of non-commutative L p spaces, J. Operator Theory 48 (2002), 41-68.
- Y. Raynaud and X. Xu, On subspaces of non-commutative L p -spaces, J. Funct. Anal. 203 (2003), 149-196.
- H.P. Rosenthal, On the subspaces of L p (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.
- F.A. Suckochev Non-isomorphisms of L p -spaces associated with finite or infinite von Neu- mann algebras, Proc. Amer. Math. Soc. 124 (1996), 1517-1527.
- M. Takesaki, Theory of operator algebras I, Springer Verlag, New York, 2001. Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Il 61801, U.S.A. junge@.math.uiuc.edu Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, njn@imada.sdu.dk Department of Mathematics, University of California, Irvine, 103 MSTB, Irvine, CA 92697-3875, U.S.A. toikhber@math.uci.edu