High stretch induces endothelial dysfunction accompanied by oxidative stress and actin remodeling in human saphenous vein endothelial cells (original) (raw)
Related papers
Mechanical stretch: physiological and pathological implications for human vascular endothelial cells
Vascular Cell, 2015
Vascular endothelial cells are subjected to hemodynamic forces such as mechanical stretch due to the pulsatile nature of blood flow. Mechanical stretch of different intensities is detected by mechanoreceptors on the cell surface which enables the conversion of external mechanical stimuli to biochemical signals in the cell, activating downstream signaling pathways. This activation may vary depending on whether the cell is exposed to physiological or pathological stretch intensities. Substantial stretch associated with normal physiological functioning is important in maintaining vascular homeostasis as it is involved in the regulation of cell structure, vascular angiogenesis, proliferation and control of vascular tone. However, the elevated pressure that occurs with hypertension exposes cells to excessive mechanical load, and this may lead to pathological consequences through the formation of reactive oxygen species, inflammation and/or apoptosis. These processes are activated by downstream signaling through various pathways that determine the fate of cells. Identification of the proteins involved in these processes may help elucidate novel mechanisms involved in vascular disease associated with pathological mechanical stretch and could provide new insight into therapeutic strategies aimed at countering the mechanisms' negative effects.
Scientific Reports
The long saphenous vein (LSV) is commonly used as a conduit in coronary artery bypass grafting. However, long term patency remains limited by the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. The impact of acute exposure of venous endothelial cells (ECs) to acute arterial wall shear stress (WSS) in the arterial circulation, and the subsequent activation of inflammatory pathways, remain poorly defined. Here, we tested the hypothesis that acute exposure of venous ECs to high shear stress is associated with inflammatory responses that are regulated by NF-κB both in-vitro and ex-vivo. Analysis of the LSV endothelium revealed that activation of NF-κB occurred within 30 min after exposure to arterial rates of shear stress. Activation of NF-κB was associated with increased levels of CCL2 production and enhanced binding of monocytes in LSVECs exposed to 6 h acute arterial WSS. Consistent with this, ex vivo exposure of LSVs to acute arterial WSS p...
Stretch of the Vascular Wall Induces Smooth Muscle Differentiation by Promoting Actin Polymerization
Journal of Biological Chemistry, 2004
Stretch of the vascular wall by the intraluminal blood pressure stimulates protein synthesis and contributes to the maintenance of the smooth muscle contractile phenotype. The expression of most smooth muscle specific genes has been shown to be regulated by serum response factor and stimulated by increased actin polymerization. Hence we hypothesized that stretch-induced differentiation is promoted by actin polymerization. Intact mouse portal veins were cultured under longitudinal stress and compared with unstretched controls. In unstretched veins the rates of synthesis of several proteins associated with the contractile/cytoskeletal system (␣-actin, calponin, SM22␣, tropomyosin, and desmin) were dramatically lower than in stretched veins, whereas other proteins (-actin and heat shock proteins) were synthesized at similar rates. The cytoskeletal proteins ␥-actin and vimentin were weakly stretch-sensitive. Inhibition of Rho-associated kinase by culture of stretched veins with Y-27632 produced similar but weaker effects compared with the absence of mechanical stress. Induction of actin polymerization by jasplakinolide increased SM22␣ synthesis in unstretched veins to the level in stretched veins. Stretch stimulated Rho activity and phosphorylation of the actin-severing protein cofilin-2, although both effects were slow in onset (Rho-GTP, >15 min; cofilin-P, >1 h). Cofilin-2 phosphorylation of stretched veins was inhibited by Y-27632. The F/G-actin ratio after 24 h of culture was significantly greater in stretched than in unstretched veins, as shown by both ultracentrifugation and confocal imaging with phalloidin/DNase I labeling. The results show that stretch of the vascular wall stimulates increased actin polymerization, activating synthesis of smooth muscle-specific proteins. The effect is partially, but probably not completely, mediated via Rho-associated kinase and cofilin downstream of Rho.
International Journal of Hypertension, 2011
Objective. To evaluate the impact of oxidative stress on vascular reactivity to vasoconstrictors and on nitric oxide (NO) bioavailability in saphenous vein (SV) graft with endothelial dysfunction from hypertensive patients (HT).Methods. Endothelial function, vascular reactivity, oxidative state, nitrites and NO release were studied in isolated SV rings from HT and normotensive patients (NT). Only rings with endothelial dysfunction were used.Results. HT rings presented a hyperreactivity to vasoconstrictors that was reverted by diphenylene iodonium (DPI). In NT, no effect of DPI was obtained, but Nω-nitro-L-arginine methyl ester (L-NAME) increased the contractile response. NO was present in SV rings without endothelial function. Nitrites were higher in NT than in HT (1066.1 ± 86.3 pmol/mg;n=11versus 487.8 ± 51.6;n=23;P<0.01) and inhibited by nNOS inhibitor. L-arginine reversed this effect. Antioxidant agents increased nitrites and NO contents only in HT. The anti-nNOS-stained area ...
Arteriosclerosis, Thrombosis, and Vascular Biology, 2009
Objective— Localization of atherosclerotic plaques typically correlates with areas of biomechanical strain where shear stress is decreased while stretch, thought to promote atherogenesis through enhanced oxidative stress, is increased. Methods and Results— In human cultured endothelial cells, nitric oxide synthase expression was exclusively shear stress–dependent whereas expression of glutathione peroxidase-1 (GPx-1), but not that of Cu 2+ /Zn 2+ -superoxide dismutase or Mn 2+ -superoxide dismutase, was upregulated solely in response to cyclic stretch. GPx-1 expression was also enhanced in isolated mouse arteries perfused at high pressure. Combined pharmacological and decoy oligodeoxynucleotide blockade revealed that activation of p38 MAP kinase followed by nuclear translocation of CCAAT/enhancer binding protein plays a pivotal role in stretch-induced GPx-1 expression in human endothelial cells. Antisense oligodeoxynucleotide knockdown of GPx-1 reinforced both their capacity to gene...
Arteriosclerosis, Thrombosis, and Vascular Biology, 1998
In vivo, vascular walls are exposed to mechanical stretch, which may promote atherogenesis. This study was designed to investigate the effect of mechanical stretch on the production and gene expression of cytokines in endothelial cells (ECs) of human umbilical veins. ECs were cultured on flexible silicone membranes and exposed to cyclic mechanical stretch. Although the secretion levels of interleukin (IL)-1, tumor necrosis factor-␣, IL-6, granulocyte (G) -colony stimulating factor(CSF), G and macrophage (M) -CSF, and M-CSF were not affected by cyclic stretch over 24 hours, the levels of IL-8 and monocyte chemotactic and activating factor (MCAF)/monocyte chemoattractant protein-1 (MCP-1) were significantly increased by cyclic stretch. Northern blot analysis indicated that the mRNA levels of IL-8 and MCAF/MCP-1 were upregulated by cyclic stretch as a function of its intensity. Cytochalasin D, which disrupts the actin cytoskeleton, abolished the stretch-induced gene expression of IL-8 and MCAF/MCP-1. In contrast, neither inhibition of stretch-activated ion channels nor disruption of microtubules affected the induction of these chemokines by cyclic stretch. Northern blot analysis using enzyme inhibitors showed that phospholipase C, protein kinase C, and tyrosine kinase were involved in the stretch-induced gene expression of IL-8 and MCAF/MCP-1, whereas cAMP-or cGMP-dependent protein kinase was not. In conclusion, cyclic stretch enhanced the secretion and gene expression of IL-8 and MCAF/MCP-1 in a stretch-dependent fashion, and the integrity of the actin cytoskeleton and activities of phospholipase C, protein kinase C, and tyrosine kinase may be essential in the process of stretch-induced gene induction of IL-8 and MCAF/MCP-1. (Arterioscler Thromb Vasc Biol. 1998;18:894-901.)
Molecular & Cellular Proteomics, 2003
Increased force generation and smooth muscle remodeling follow the implantation of saphenous vein as an arterial bypass graft. Previously, we characterized and mapped 129 proteins in human saphenous vein medial smooth muscle using two-dimensional (2-D) PAGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Here, we focus on actin filament remodeling in response to simulated arterial flow. Human saphenous vein was exposed to simulated venous or arterial flow for 90 min in vitro, and the contractile medial smooth muscle was dissected out and subjected to 2-D gel electrophoresis using a non-linear immobilized pH 3-10 gradient in the first dimension. Proteins were analyzed quantitatively using PDQuest 2-D software. The actin polymerization inhibitor cytochalasin B (1 M) prevented increases in force generation after 90 min of simulated arterial flow. At this time point, there were several consistent changes in actin filament-associated protein expression (seven paired vein samples). The heat shock protein HSP27, identified as a three-spot charge train, showed a 1.6-fold increase in abundance (p ؍ 0.01), but with reduced representation of the phosphorylated Ser 82 and Ser 15 Ser 82 isoforms (p ؍ 0.018). The abundance of actin-capping protein ␣2 subunit CapZ had decreased 3-fold, p ؍ 0.04. A 19-kDa proteolytic fragment of actin increased 2-fold, p ؍ 0.04. For the four-spot charge train of gelsolin, there was reduced representation of the more acidic isoforms, p ؍ 0.022. The abundance of other proteins associated with actin filaments, including cofilin and destrin, remained unchanged after arterial flow. Actin filament remodeling with differential expression and/or post-translational modification of proteins involved in capping the barbed end of actin filaments, HSP27 and CapZ, is an early response of contractile saphenous vein smooth muscle cells to hemodynamic stress. The observed changes would favor the generation of contractile stress fibers. Molecular & Cellular Proteomics 3: 115-124, 2004.
International Journal of Biological Macromolecules, 2013
The study is designed to investigate effect of mechanical stretch on the function of fibroblast cells. Human coronary artery fibroblasts were cultured. They were divided into two groups: stretch group (stretch for 24 h) and no-stretch group (did not stretch). ELISA analysis was used for detection of collagen secretion. CCK-8 method was used for detection of cells proliferation. RT-PCR method was used for detection of MMP, TIMP, IL-6, alpha-SMA, HSF1 and HSP70 mRNA expression. Western-blotting method was used for detection of HSF1 protein expression. Results showed that cells proliferation in stretch group was stronger than that in no-stretch group. Hydroxyproline secretion in stretch group was more than that in no-stretch group. MMP-9/TIMP, alpha-SMA, IL-6, HSF1 and HSP70 in stretch group was higher than those in no-stretch group. Western-blotting analysis showed that HSF1 protein expression was upregulated in stretch group. It can be concluded that mechanical stretch changed human coronary artery fibroblasts cells proliferation, collagen formation, the secretion of inflammatory factor possibly by upregulating HSF1 protein expression.