Novel influenza vaccine M2SR protects against drifted H1N1 and H3N2 influenza virus challenge in ferrets with pre-existing immunity (original) (raw)

Pandemic H1N1 vaccine requires the use of an adjuvant to protect against challenge in naïve ferrets

Vaccine, 2011

In the context of an A/H1N1 influenza pandemic situation, this study demonstrates that heterologous vaccination with an AS03-adjuvanted 2008/2009 seasonal trivalent and pandemic H5N1 monovalent split vaccine conferred partial protection in influenza-naïve ferrets after challenge with the influenza pandemic H1N1 A/The Netherlands/602/09 virus. Further, unlike saline control and non-adjuvanted vaccine, it was shown that immunization of naïve ferrets with an AS03-adjuvanted pandemic H1N1 A/California/7/09 influenza split vaccine induced increased antibody response and enhanced protection against the challenge strain, including significant reduction in viral shedding in the upper respiratory tract and reduced lung pathology post-challenge. These results show the need for vaccination with the adjuvanted vaccine to fully protect against viral replication and influenza disease in unprimed ferrets.

Pandemic H1N1 vaccine requires the use of an adjuvant to protect against challenge in na�ve ferrets

Vaccine, 2011

In the context of an A/H1N1 influenza pandemic situation, this study demonstrates that heterologous vaccination with an AS03-adjuvanted 2008/2009 seasonal trivalent and pandemic H5N1 monovalent split vaccine conferred partial protection in influenza-naïve ferrets after challenge with the influenza pandemic H1N1 A/The Netherlands/602/09 virus. Further, unlike saline control and non-adjuvanted vaccine, it was shown that immunization of naïve ferrets with an AS03-adjuvanted pandemic H1N1 A/California/7/09 influenza split vaccine induced increased antibody response and enhanced protection against the challenge strain, including significant reduction in viral shedding in the upper respiratory tract and reduced lung pathology post-challenge. These results show the need for vaccination with the adjuvanted vaccine to fully protect against viral replication and influenza disease in unprimed ferrets.

A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies

npj Vaccines, 2017

Influenza viruses evade human adaptive immune responses due to continuing antigenic changes. This makes it necessary to re-formulate and re-administer current seasonal influenza vaccines on an annual basis. Our pan-influenza vaccination approach attempts to redirect antibody responses from the variable, immuno-dominant hemagglutinin head towards the conserved—but immuno-subdominant—hemagglutinin stalk. The strategy utilizes sequential immunization with chimeric hemagglutinin-based vaccines expressing exotic head domains, and a conserved hemagglutinin stalk. We compared a live-attenuated influenza virus prime followed by an inactivated split-virus boost to two doses of split-virus vaccines and assessed the impact of adjuvant on protection against challenge with pandemic H1N1 virus in ferrets. All tested immunization regimens successfully induced broadly cross-reactive antibody responses. The combined live-attenuated/split virus vaccination conferred superior protection against pandem...

Efficacy of Vaccination with Different Combinations of MF59-Adjuvanted and Nonadjuvanted Seasonal and Pandemic Influenza Vaccines against Pandemic H1N1 (2009) Influenza Virus Infection in Ferrets

Journal of Virology, 2011

Serum antibodies induced by seasonal influenza or seasonal influenza vaccination exhibit limited or no cross-reactivity against the 2009 pandemic swine-origin influenza virus of the H1N1 subtype (pH1N1). Ferrets immunized once or twice with MF59-adjuvanted seasonal influenza vaccine exhibited significantly reduced lung virus titers but no substantial clinical protection against pH1N1-associated disease. However, priming with MF59-adjuvanted seasonal influenza vaccine significantly increased the efficacy of a pandemic MF59adjuvanted influenza vaccine against pH1N1 challenge. Elucidating the mechanism involved in this priming principle will contribute to our understanding of vaccine-and infection-induced correlates of protection. Furthermore, a practical consequence of these findings is that during an emerging pandemic, the implementation of a priming strategy with an available adjuvanted seasonal vaccine to precede the eventual pandemic vaccination campaign may be useful and life-saving.

Elicitation of protective antibodies against a broad panel of H1N1 viruses in ferrets pre-immune to historical H1N1 influenza viruses

Journal of virology, 2017

Most pre-clinical animal studies test influenza vaccines in immunologically naïve animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have pre-existing immunity to influenza. In this study, novel, broadly-reactive influenza vaccine candidates were assessed in pre-immune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive HA antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with HAI activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with ...

Evaluation of Vaccines for H5N1 Influenza Virus in Ferrets Reveals the Potential for Protective Single-Shot Immunization

Journal of Virology, 2009

As part of influenza pandemic preparedness, policy decisions need to be made about how best to utilize vaccines once they are manufactured. Since H5N1 avian influenza virus has the potential to initiate the next human pandemic, isolates of this subtype have been used for the production and testing of prepandemic vaccines. Clinical trials of such vaccines indicate that two injections of preparations containing adjuvant will be required to induce protective immunity. However, this is a working assumption based on classical serological measures only. Examined here are the dose of viral hemagglutinin (HA) and the number of inoculations required for two different H5N1 vaccines to achieve protection in ferrets after lethal H5N1 challenge. Ferrets inoculated twice with 30 g of A/Vietnam/1194/2004 HA vaccine with AlPO 4 , or with doses as low as 3.8 g of HA with Iscomatrix (ISCOMATRIX, referred to as Iscomatrix herein, is a registered trademark of CSL Limited) adjuvant, were completely protected against death and disease after H5N1 challenge, and the protection lasted at least 15 months. Cross-clade protection was also observed with both vaccines. Significantly, complete protection against death could be achieved with only a single inoculation of H5N1 vaccine containing as little as 15 g of HA with AlPO 4 or 3.8 g of HA with Iscomatrix adjuvant. Ferrets vaccinated with the single-injection Iscomatrix vaccines showed fewer clinical manifestations of infection than those given AlPO 4 vaccines and remained highly active. Our data provide the first indication that in the event of a future influenza pandemic, effective mass vaccination may be achievable with a low-dose "single-shot" vaccine and provide not only increased survival but also significant reduction in disease severity.

Contemporary Seasonal Influenza A (H1N1) Virus Infection Primes for a More Robust Response To Split Inactivated Pandemic Influenza A (H1N1) Virus Vaccination in Ferrets

Clinical and Vaccine Immunology, 2010

Human influenza pandemics occur when influenza viruses to which the population has little or no immunity emerge and acquire the ability to achieve human-to-human transmission. In April 2009, cases of a novel H1N1 influenza virus in children in the southwestern United States were reported. It was retrospectively shown that these cases represented the spread of this virus from an ongoing outbreak in Mexico. The emergence of the pandemic led to a number of national vaccination programs. Surprisingly, early human clinical trial data have shown that a single dose of nonadjuvanted pandemic influenza A (H1N1) 2009 monovalent inactivated vaccine (pMIV) has led to a seroprotective response in a majority of individuals, despite earlier studies showing a lack of cross-reactivity between seasonal and pandemic H1N1 viruses. Here we show that previous exposure to a contemporary seasonal H1N1 influenza virus and to a lesser degree a seasonal influenza virus trivalent inactivated vaccine is able to prime for a higher antibody response after a subsequent dose of pMIV in ferrets. The more protective response was partially dependent on the presence of CD8 ؉ cells. Two doses of pMIV were also able to induce a detectable antibody response that provided protection from subsequent challenge. These data show that previous infection with seasonal H1N1 influenza viruses likely explains the requirement for only a single dose of pMIV in adults and that vaccination campaigns with the current pandemic influenza vaccines should reduce viral burden and disease severity in humans.

Comparison of Heterosubtypic Protection in Ferrets and Pigs Induced by a Single-Cycle Influenza Vaccine

Journal of immunology (Baltimore, Md. : 1950), 2018

Influenza is a major health threat, and a broadly protective influenza vaccine would be a significant advance. Signal Minus FLU (S-FLU) is a candidate broadly protective influenza vaccine that is limited to a single cycle of replication, which induces a strong cross-reactive T cell response but a minimal Ab response to hemagglutinin after intranasal or aerosol administration. We tested whether an H3N2 S-FLU can protect pigs and ferrets from heterosubtypic H1N1 influenza challenge. Aerosol administration of S-FLU to pigs induced lung tissue-resident memory T cells and reduced lung pathology but not the viral load. In contrast, in ferrets, S-FLU reduced viral replication and aerosol transmission. Our data show that S-FLU has different protective efficacy in pigs and ferrets, and that in the absence of Ab, lung T cell immunity can reduce disease severity without reducing challenge viral replication.

Cross-Protection against Lethal H5N1 Challenge in Ferrets with an Adjuvanted Pandemic Influenza Vaccine

PLoS ONE, 2008

Background. Unprecedented spread between birds and mammals of highly pathogenic avian influenza viruses (HPAI) of the H5N1 subtype has resulted in hundreds of human infections with a high fatality rate. This has highlighted the urgent need for the development of H5N1 vaccines that can be produced rapidly and in sufficient quantities. Potential pandemic inactivated vaccines will ideally induce substantial intra-subtypic cross-protection in humans to warrant the option of use, either prior to or just after the start of a pandemic outbreak. In the present study, we evaluated a split H5N1 A/H5N1/Vietnam/1194/04, clade 1 candidate vaccine, adjuvanted with a proprietary oil-in-water emulsion based Adjuvant System proven to be well-tolerated and highly immunogenic in the human (Leroux-Roels et al. (2007) The Lancet 370:580-589), for its ability to induce intrasubtypic cross-protection against clade 2 H5N1/A/Indonesia/5/05 challenge in ferrets. Methodology and Principal Findings. All ferrets in control groups receiving non-adjuvanted vaccine or adjuvant alone failed to develop specific or cross-reactive neutralizing antibodies and all died or had to be euthanized within four days of virus challenge. Two doses of adjuvanted split H5N1 vaccine containing $1.7 mg HA induced neutralizing antibodies in the majority of ferrets to both clade 1 (17/23 (74%) responders) and clade 2 viruses (14/23 (61%) responders), and 96% (22/23) of vaccinees survived the lethal challenge. Furthermore lung virus loads and viral shedding in the upper respiratory tract were reduced in vaccinated animals relative to controls suggesting that vaccination might also confer a reduced risk of viral transmission. Conclusion. These protection data in a stringent challenge model in association with an excellent clinical profile highlight the potential of this adjuvanted H5N1 candidate vaccine as an effective tool in pandemic preparedness.

Control of pandemic (H1N1) 2009 influenza virus infection of ferret lungs by non-adjuvant-containing pandemic and seasonal vaccines

Vaccine, 2012

The pandemic H1N1 2009 influenza virus caused relatively mild disease in most infected people but some suffered extensively from primary lung infection, many more than would have occurred with seasonal influenza infection. Early commercially available pandemic H1N1 vaccines did not contain adjuvant, as did many of the subsequent vaccines, and could not stop infection with the pandemic virus in vaccinated ferrets. Nevertheless, we showed that virus loads in the lungs were greatly diminished in ferrets vaccinated once with an unadjuvanted pandemic vaccine and challenged with 10 6 EID 50 wildtype A/California/07/2009 (H1N1). In addition, a single inoculation with seasonal vaccine showed beneficial reduction in pandemic pulmonary virus loads in the absence of any detectable cross-reactive serological responses. Ferrets primed with either seasonal or pandemic vaccine and then boosted with pandemic vaccine also showed less extensive lung infection when challenged with a tenfold higher dose of pandemic virus. These results implicate non-classical protective mechanisms that prevent severe pulmonary disease but not viral shedding and imply that particular non-adjuvanted vaccines may have retained the ability to induce these responses.