Remarks on Paraconsistency and Contradiction (original) (raw)
In this paper we propose to take seriously the claim that at least some kinds of paraconsistent negations are subcontrariety forming operators. We shall argue that from an intuitive point of view, by considering paraconsistent negations that way, one needs not worry with true contradictions and the like, given that "true contradictions" are not involved in these paraconsistent logics. Our strategy consists in showing that the natural translation for subcontrariety in formal languages is not a contradiction in natural language, and vice versa. This move shall provide for an intuitive interpretation for paraconsistent negation, which we also discuss here. By putting all those pieces together, we hope a clearer sense of paraconsistency can be made, one which may free us from the need to tame contradictions.