Systematic Evaluation of the Mitogen-Activated Protein Kinases in the Induction of iNOS by Tumor Necrosis Factor-Alpha and Interferon-Gamma (original) (raw)

Mitogen-activated Protein Kinases in Inflammation

Mitogen-activated protein kinases (MAPKs) play critical regulatory roles in the production of the pro-inflammatory cytokines and downstream signaling events which lead to inflammation. Inflammation is a primarily localized and protective response of host against microbial infection. C ontrolled inflammation is beneficial and necessary for host defense while uncontrolled inflammatory response results in inflammatory diseases such as septic shock, rheumatoid arthritis and cancer. The MAPK family consists of three subfamilies; the extracellular signal-regulated kinases (ERKs), the c-Jun N-terminal kinases (JNKs), and the p38 MAPKs. MA PKs are involved in transmitting extracellular signals to nucleus which leads to gene regulation. In this review, we summarize the current knowledge of ERK1/2, JNKs, and p38 MAPK members and their roles in inflammation.

IFN-γ + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38mapkin a mouse macrophage cell line

American Journal of Physiology-Cell Physiology, 2001

Nitric oxide (NO·) produced by inducible nitric oxide synthase (iNOS) mediates a number of important physiological and pathophysiological processes. The objective of this investigation was to examine the role of mitogen-activated protein kinases (MAPKs) in the regulation of iNOS and NO· by interferon-γ (IFN-γ) + lipopolysaccharide (LPS) in macrophages using specific inhibitors and dominant inhibitory mutant proteins of the MAPK pathways. The signaling pathway utilized by IFN-γ in iNOS induction is well elucidated. To study signaling pathways that are restricted to the LPS-signaling arm, we used a subclone of the parental RAW 264.7 cell line that is unresponsive to IFN-γ alone with respect to iNOS induction. In this RAW 264.7γNO(−) subclone, IFN-γ and LPS are nevertheless required for synergistic activation of the iNOS promoter. We found that extracellular signal-regulated kinase (ERK) augmented and p38mapkinhibited IFN-γ + LPS induction of iNOS. Dominant-negative MAPK kinase-4 inhib...

Evaluation of the Role of Mitogen-Activated Protein Kinases in the Expression of Inducible Nitric Oxide Synthase by IFN-γ and TNF-α in Mouse Macrophages

The Journal of Immunology

The expression of inducible nitric oxide synthase (iNOS) by macrophages is stimulated by coexposure to IFN-γ and a number of stimuli, including TNF-α. Recent work has shown that TNF-α activates members of the mitogen-activated protein kinase family that subsequently trans-activate transcription factors implicated in the regulation of iNOS expression. The objective of this study was to systematically evaluate the role of: 1) p42mapk/erk2, 2) p46 c-Jun NH2-terminal kinase/stress-activated protein kinase (p46 JNK/SAPK), and 3) p38mapk in the induction of iNOS expression during costimulation of mouse macrophages with IFN-γ and TNF-α. All three kinases were activated during costimulation with IFN-γ and TNF-α. However, specific antagonism of the p42mapk/erk2 and p38mapk with PD98059 and SKF86002, respectively, had no effect on the induction of iNOS expression. In contrast, blockade of all three kinases with N-acetylcysteine completely blocked the induction of iNOS expression. In addition,...

Regulation of TNF Expression by Multiple Mitogen-Activated Protein Kinase Pathways

The Journal of …, 2000

Stimulating macrophages with bacterial endotoxin (LPS) activates numerous intracellular signaling pathways that lead to the production of TNF. In this study, we show that four mitogen-activated protein (MAP) kinase pathways are activated in LPSstimulated macrophages: the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase/stress-activated protein kinase, p38, and Big MAP kinase (BMK)/ERK5 pathways. Although specific activation of a single MAP kinase pathway produces only a modest effect on TNF promoter activation, activation of each MAP kinase pathway is important for full induction of the TNF gene. Interestingly, a dramatic induction of TNF promoter-driven gene expression was observed when all of the four MAP kinase pathways were activated simultaneously, suggesting a cooperative effect among these kinases. Unexpectedly, cis elements known to be targeted by MAP kinases do not play a major role in multiple MAP kinase-induced TNF gene expression. Rather, a 40-bp sequence harboring the TATA box, is responsible for the gene up-regulation induced by MAP kinases. The proximity of the MAP kinase-responsive element to the transcriptional initiation site suggested that MAP kinases regulate the transcriptional initiation complex.

Review Mitogen-Activated Protein Kinases and Their Role in Regulation of Cellular Processes

2013

Abstract. Mitogen-activated protein kinases (MAPKs) are evolutionary conserved enzymes connecting cell-surface receptors to critical regulatory targets within cells. The three major MAPK cascades are known, the extracellular signal-regulated protein kinase (ERK) cascade, c-Jun amino-terminal protein kinase/stress-activated protein kinase (JNK/SAPK) cascade and p38-MAPK cascade. This paper is focused on characterization of these MAPK cascades in terms of their distribution and biological role in some pathological processes (apoptosis, hypertrophy) with a special orientation on the role of MAPKs in cardiovascular system during ischemia/reperfusion. Key words: Mitogen-activated protein kinase — Ischemia — Kinase inhibitors Introduction and characterization of MAPK cascades Eukaryotic cells respond to extracellular stimuli by transmitting intracellular signals to coordinate appropriate responses. Protein phosphorylation is a major regulatory mechanism utilized by second messenger system...

Two Coordinated Mechanisms Underlie Tumor Necrosis Factor Alpha-Induced Immediate and Delayed IκB Kinase Activation

Molecular and Cellular Biology, 2013

Tumor necrosis factor alpha (TNF-α)-induced NF-κB activation has been believed to depend on TRAF2- and cIAP1-mediated RIP1 ubiquitination. However, recent findings have challenged the notion that these proteins play essential roles in NF-κB activation. Here, by assessing the kinetics and amplitude of IκB kinase (IKK) activation, we report that TNF-α-induced immediate and robust activation of IKK requires K63-linked and linearly linked ubiquitination of RIP1 and that in the absence of RIP1 expression, TRAF2 and cIAP1 cooperatively induce delayed IKK activation by recruiting LUBAC to TNFR1. Knockdown of HOIP (a component of LUBAC) in RIP1-deficient cells completely impairs the recruitment and activation of IKK but does not affect K63-linked ubiquitination of TRAF2 and recruitment of TAK1 to TNFR1, suggesting that the K63-linked ubiquitin chain is not capable of recruiting IKK in vivo . We also demonstrate that TRAF2 and cIAP1 together, but not either one alone, directly catalyze linea...